MapReduce Approach to Collective Classification for Networks

  • Wojciech Indyk
  • Tomasz Kajdanowicz
  • Przemysław Kazienko
  • Sławomir Plamowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7267)

Abstract

The collective classification problem for big data sets using MapReduce programming model was considered in the paper. We introduced a proposal for implementation of label propagation algorithm in the network. The method was examined on real dataset in telecommunication domain. The results indicated that it can be used to classify nodes in order to propose new offerings or tariffs to customers.

Keywords

MapReduce collective classification classification in networks label propagation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ekanayake, J., Pallickara, S., Fox, G.: MapReduce for Data Intensive Scientific Analyses. In: Proceedings of the 2008 Fourth IEEE International Conference on eScience (2008)Google Scholar
  2. 2.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation, pp. 10–24. USENIX Association, Berkeley (2004)Google Scholar
  3. 3.
    White, T.: Hadoop: The Definitive Guide. O’Reilly (2009)Google Scholar
  4. 4.
    Hadoop official web site (November 05, 2011), hadoop.apache.org
  5. 5.
    Szummer, M., Jaakkola, T.: Clustering and efficient use of unlabeled examples. In: Proceedings of Neural Information Processing Systems, NIPS (2001)Google Scholar
  6. 6.
    Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the International Conference on Machine Learning, ICML (2003)Google Scholar
  7. 7.
    Azran, A.: The rendezvous algorithm: Multiclass semi-supervised learning with markov random walks. In: Proceedings of the International Conference on Machine Learning, ICML (2007)Google Scholar
  8. 8.
    Jensen, D., Neville, J., Gallagher, B.: Why collective inference improves relational classification. In: The Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 593–598 (2004)Google Scholar
  9. 9.
    Desrosiers, C., Karypis, G.: Within-Network Classification Using Local Structure Similarity. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5781, pp. 260–275. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Knobbe, A., de Haas, M., Siebes, A.: Propositionalisation and Aggregates. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 277–288. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Kramer, S., Lavrac, N., Flach, P.: Propositionalization approaches to relational data mining. In: Dezeroski, S. (ed.) Relational Data Mining, pp. 262–286. Springer (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wojciech Indyk
    • 1
  • Tomasz Kajdanowicz
    • 1
  • Przemysław Kazienko
    • 1
  • Sławomir Plamowski
    • 1
  1. 1.Faculty of Computer Science and ManagementWroclaw University of TechnologyWroclawPoland

Personalised recommendations