Advertisement

Do We Need Complex Models for Gestures? A Comparison of Data Representation and Preprocessing Methods for Hand Gesture Recognition

  • Marcin Blachnik
  • Przemysław Głomb
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7267)

Abstract

Human-Computer Interaction (HCI) is one of the most rapidly developing fields of computer applications. One of approaches to HCI is based on gestures which are in many cases more natural and effective than conventional inputs. In the paper the problem of gesture recognition is investigated. The gestures are gathered from the dedicated motion capture system, and further evaluated by 3 different preprocessing procedures and 4 different classifier. Our results suggest that most of the combinations produce adequate recognition rate, with appropriate signal normalization being the key element.

Keywords

Human-Computer Interaction gesture recognition signal processing machine learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), Software http://www.csie.ntu.edu.tw/~cjlin/libsvm Google Scholar
  5. 5.
    Corradini, A.: Dynamic time warping for off-line recognition of a small gesture vocabulary. In: Proceedings of IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems (2001)Google Scholar
  6. 6.
    Głomb, P., Romaszewski, M., Opozda, S., Sochan, A.: Choosing and modeling hand gesture database for natural user interface. In: Proc. of GW 2011: The 9th International Gesture Workshop Gesture in Embodied Communication and Human-Computer Interaction (2011)Google Scholar
  7. 7.
    Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification. Tech. rep., Department of Computer Science, National Taiwan University (2003), http://www.csie.ntu.edu.tw/~cjlin/papers.html
  8. 8.
    Kadous, M.: Temporal Classification: Extending the Classification Paradigm to Multivariate Time Series. Ph.D. thesis, University of New South Wales (2002)Google Scholar
  9. 9.
    Li, C., Zhai, P., Zheng, S., Prabhakaran, B.: Segmentation and recognition of multi-attribute motion sequences. In: Proceedings of the 12th Annual ACM International Conference on Multimedia, pp. 836–843 (2004)Google Scholar
  10. 10.
    Li, C., Prabhakaran, B.: A similarity measure for motion stream segmentation and recognition. In: Proceedings of the MDM (2005)Google Scholar
  11. 11.
    Liu, J., Kavakli, M.: Hand Gesture Recognition Based on Segmented Singular Value Decomposition. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010, Part II. LNCS, vol. 6277, pp. 214–223. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Oppenheim, A.V., Schafer, R.W.: Discrete-time signal processing. Prentice Hall (2010)Google Scholar
  13. 13.
    Quinlan, J.: C 4.5: Programs for machine learning. Morgan Kaufmann, San Mateo (1993)Google Scholar
  14. 14.
    Schölkopf, B., Smola, A.: Learning with Kernels. In: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)Google Scholar
  15. 15.
    Wang, R., Popovic, J.: Real time hand tracking with a color glove 28(3) (2009)Google Scholar
  16. 16.
    Witten, I., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann (2005)Google Scholar
  17. 17.
    Yang, K., Shahabi, C.: A pca-based kernel for kernel pca on multivariate time series. In: Proceedings of ICDM 2005 Workshop on Temporal Data Mining: Algorithms, Theory and Applications, pp. 149–156 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marcin Blachnik
    • 1
  • Przemysław Głomb
    • 2
  1. 1.Department of Management and InformaticsSilesian University of TechnologyKatowicePoland
  2. 2.The Institute of Theoretical and Applied InformaticsPolish Academy of SciencesGliwicePoland

Personalised recommendations