Spectra of the Spike-Flow Graphs in Geometrically Embedded Neural Networks

  • Jarosław Piersa
  • Tomasz Schreiber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7267)

Abstract

In this work we study a simplified model of a neural activity flow in networks, whose connectivity is based on geometrical embedding, rather than being lattices or fully connected graphs. We present numerical results showing that as the spectrum (set of eigenvalues of adjacency matrix) of the resulting activity-based network develops a scale-free dependency. Moreover it strengthens and becomes valid for a wider segment along with the simulation progress, which implies a highly organised structure of the analysed graph.

Keywords

geometric neural networks graph spectrum scale-freeness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A Learning Algorithm for Boltzmann Machines. Cognitive Science 9(1), 147–169 (1985)CrossRefGoogle Scholar
  2. 2.
    Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74 (January 2002)Google Scholar
  3. 3.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews, Neuroscience 10 (March 2009)Google Scholar
  4. 4.
    Chung, F., Lu, L.: Complex graphs and networks. American Mathematical Society (2006)Google Scholar
  5. 5.
    Chialvo, D.: Critical brain networks. Physica A: Statistical Mechanics and its Applications 340(4) (September 2004)Google Scholar
  6. 6.
    Cvetković, D., Rowlingson, P., Simić, S.: Eigenspaces of graphs. Cambridge University Press (1997)Google Scholar
  7. 7.
    Eguiluz, V., Chialvo, D., Cecchi, G., Baliki, M., Apkarian, V.: Scale-Free Brain Functional Networks, Physical Review Letters, PRL 94 018102 (January 2005)Google Scholar
  8. 8.
    Erdős, P., Réyni, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)MathSciNetGoogle Scholar
  9. 9.
    Piekniewski, F.: Spectra of the Spike Flow Graphs of Recurrent Neural Networks. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part II. LNCS, vol. 5769, pp. 603–612. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Piersa, J., Piekniewski, F., Schreiber, T.: Theoretical model for mesoscopic-level scale-free self-organization of functional brain networks. IEEE Transactions on Neural Networks 21(11) (November 2010)Google Scholar
  11. 11.
    Piersa, J.: Diameter of the spike-flow graphs of geometrical neural networks. In: 9th International Conference on Parallel Processing and Applied Mathematics (September 2011) (in print)Google Scholar
  12. 12.
    Schreiber, T.: Spectra of winner-take-all stochastic neural networks, 3193(0810), pp. 1–21 (October 2008), arXiv http://arxiv.org/PS_cache/arxiv/pdf/0810/0810.3193v2.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jarosław Piersa
    • 1
  • Tomasz Schreiber
    • 1
  1. 1.Faculty of Mathematics and Computer ScienceNicolaus Copernicus UniversityPoland

Personalised recommendations