Oblivious Two-Way Finite Automata: Decidability and Complexity

  • Martin Kutrib
  • Andreas Malcher
  • Giovanni Pighizzini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7256)

Abstract

We investigate the descriptional complexity and decidability of obliviousness for two-way finite automata. In particular, we consider the simulation of two-way deterministic finite automata (\(\textrm{2DFA}\)s) by oblivious \(\textrm{2DFA}\)s, the simulation of oblivious \(\textrm{2DFA}\)s by sweeping \(\textrm{2DFA}\)s and one-way nondeterministic finite automata (\(\textrm{1NFA}\)s) as well as the simulation of sweeping \(\textrm{2DFA}\)s by \(\textrm{1NFA}\)s. In all cases exponential upper and lower bounds on the number of states are obtained for languages over an alphabet with at most four latters. Moreover, it is shown that obliviousness is decidable for \(\textrm{2DFA}\)s.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berman, P., Lingas, A.: On the complexity of regular languages in terms of finite automata. Tech. Rep. 304, Polish Academy of Sciences (1977)Google Scholar
  2. 2.
    Birget, J.C.: Intersection and union of regular languages and state complexity. Inform. Process. Lett. 43, 185–190 (1992)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47, 149–158 (1986)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Geffert, V.: Nondeterministic computations in sublogarithmic space and space constructibility. SIAM J. Comput. 20, 484–498 (1991)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Geffert, V., Mereghetti, C., Pighizzini, G.: Converting Two-Way Nondeterministic Unary Automata into Simpler Automata. Theoret. Comput. Sci. 295, 189–203 (2003)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Geffert, V., Pighizzini, G.: Two-way unary automata versus logarithmic space. Inform. Comput. 209, 1016–1025 (2011)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic finite automata. Inform. Process. Lett. 59, 75–77 (1996)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Gurari, E.M.: The equivalence problem for deterministic two-way sequential transducers is decidable. SIAM J. Comput. 11, 448–452 (1982)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Holzer, M.: Multi-head finite automata: data-independent versus data-dependent computations. Theoret. Comput. Sci. 286, 97–116 (2002)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Holzer, M., Kutrib, M.: Descriptional complexity – An introductory survey. In: Scientific Applications of Language Methods, pp. 1–58. Imperial College Press (2010)Google Scholar
  11. 11.
    Holzer, M., Kutrib, M., Malcher, A.: Multi-head finite automata: Origins and directions. Theoret. Comput. Sci. 412, 83–96 (2011)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)MATHGoogle Scholar
  13. 13.
    Hromkovič, J., Schnitger, G.: Nondeterminism versus Determinism for Two-way Finite Automata: Generalizations of Sipser’s Separation. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 439–451. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Hromkovič, J., Schnitger, G.: Lower bounds on the size of sweeping automata. Autom., Lang. Comb. 14, 23–31 (2009)MathSciNetMATHGoogle Scholar
  15. 15.
    Kapoutsis, C.A.: Removing Bidirectionality from Nondeterministic Finite Automata. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 544–555. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Kapoutsis, C.A.: Two-Way Automata versus Logarithmic Space. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 359–372. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Lange, K.J., Niedermeier, R.: Data-Independences of Parallel Random Access Machines. In: Shyamasundar, R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 104–113. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  18. 18.
    Leung, H.: Tight lower bounds on the size of sweeping automata. Comput. System Sci. 63, 384–393 (2001)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Leung, H.: A technique for proving lower bounds on the size of sweeping automata. Autom., Lang. Comb. 14, 93–105 (2009)MathSciNetMATHGoogle Scholar
  20. 20.
    Lupanov, O.B.: A comparison of two types of finite sources. Problemy Kybernetiki 9, 321–326 (1963) (in Russian); German translation: Über den Vergleich zweier Typen endlicher Quellen. Probleme der Kybernetik 6, 328–335 (1966)Google Scholar
  21. 21.
    Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata. SIAM J. Comput. 30, 1976–1992 (2001)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: Symposium on Switching and Automata Theory (SWAT 1971), pp. 188–191. IEEE (1971)Google Scholar
  23. 23.
    Micali, S.: Two-way deterministic finite automata are exponentially more succinct than sweeping automata. Inform. Process. Lett. 12, 103–105 (1981)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput. 20, 1211–1214 (1971)MATHCrossRefGoogle Scholar
  25. 25.
    Paterson, M.S., Fischer, M.J., Meyer, A.R.: An improved overlap argument for on-line multiplication. In: Complexity of Computation. SIAM-AMS Proceedings, vol. 7, pp. 97–112. AMS, New Jersey (1974)Google Scholar
  26. 26.
    Petersen, H.: The Head Hierarchy for Oblivious Finite Automata with Polynomial Advice Collapses. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 296–304. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  27. 27.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 114–125 (1959)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata. In: Symposium on Theory of Computing (STOC 1978), pp. 275–286. ACM Press, New York (1978)Google Scholar
  29. 29.
    Sipser, M.: Lower bounds on the size of sweeping automata. Comput. System Sci. 21, 195–202 (1980)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Martin Kutrib
    • 1
  • Andreas Malcher
    • 1
  • Giovanni Pighizzini
    • 2
  1. 1.Institut für InformatikUniversität GiessenGiessenGermany
  2. 2.Dipartimento di Informatica e ComunicazioneUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations