Decidability Classes for Mobile Agents Computing

  • Pierre Fraigniaud
  • Andrzej Pelc
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7256)


We establish a classification of decision problems that are to be solved by mobile agents operating in unlabeled graphs, using a deterministic protocol. The classification is with respect to the ability of a team of agents to solve the problem, possibly with the aid of additional information. In particular, our focus is on studying differences between the decidability of a decision problem by agents and its verifiability when a certificate for a positive answer is provided to the agents. Our main result shows that there exists a natural complete problem for mobile agent verification. We also show that, for a single agent, three natural oracles yield a strictly increasing chain of relative decidability classes.


Single Agent Decision Problem Mobile Agent Binary String Port Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM Journal on Computing 29, 1164–1188 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Angluin, D.: Local and global properties in networks of processors. In: STOC 1980, pp. 82–93 (1980)Google Scholar
  3. 3.
    Alpern, S.: Rendezvous search on labelled networks. Naval Research Logistics 49, 256–274 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Alpern, S., Gal, S.: The theory of search games and rendezvous. Int. Series in Operations research and Management Science. Kluwer Academic Publisher (2002)Google Scholar
  5. 5.
    Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of Applied Probability 36, 223–231 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: SoCG 1998, pp. 365–373 (1998)Google Scholar
  7. 7.
    Bender, M.A., Slonim, D.K.: The power of team exploration: Two robots can learn unlabeled directed graphs. In: FOCS 1994, pp. 75–85 (1994)Google Scholar
  8. 8.
    Boldi, P., Vigna, S.: Computing Anonymously with Arbitrary Knowledge. In: PODC 1999, pp. 181–188 (1999)Google Scholar
  9. 9.
    Boldi, P., Vigna, S.: An Effective Characterization of Computability in Anonymous Networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 33–47. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Boldi, P., Vigna, S.: Fibrations of graphs. Disc. Maths 243(1-3), 21–66 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Chalopin, J., Das, S., Kosowski, A.: Constructing a Map of an Anonymous Graph: Applications of Universal Sequences. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 119–134. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Chalopin, J., Godard, E., Métivier, Y.: Local Terminations and Distributed Computability in Anonymous Networks. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 47–62. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the Robots Gathering Problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Collins, A., Czyzowicz, J., Gąsieniec, L., Labourel, A.: Tell Me Where I Am So I Can Meet You Sooner. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 502–514. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. In: SODA 2010, pp. 22–30 (2010)Google Scholar
  16. 16.
    Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: Log-space rendezvous in arbitrary graphs. In: PODC 2010, pp. 450–459 (2010)Google Scholar
  17. 17.
    Das, S., Flocchini, P., Santoro, N., Yamashita, M.: On the computational power of oblivious robots: forming a series of geometric patterns. In: PODC 2010, pp. 267–276 (2010)Google Scholar
  18. 18.
    Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed Verification and Hardness of Distributed Approximation. In: STOC 2011, pp. 363–372 (2011)Google Scholar
  19. 19.
    Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. Journal of Graph Theory 32, 265–297 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of Asynchronous Oblivious Robots with Limited Visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Fraigniaud, P., Ilcinkas, D.: Digraphs Exploration with Little Memory. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 246–257. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Fraigniaud, P., Korman, A., Peleg, D.: Local Distributed Decision. In: FOCS 2011, pp. 708–717 (2011)Google Scholar
  24. 24.
    Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration. Networks 48, 166–177 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Fraigniaud, P., Pelc, A.: Deterministic Rendezvous in Trees with Little Memory. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and Checkability in Wait-free Computing. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 333–347. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. In: SODA 2007, pp. 585–594 (2007)Google Scholar
  28. 28.
    Goos, M., Suomela, J.: Locally checkable proofs. In: PODC 2011, pp. 159–168 (2011)Google Scholar
  29. 29.
    Korman, A., Kutten, S., Peleg, D.: Proof Labeling Schemes. Distributed Computing 22, 215–233 (2010)CrossRefGoogle Scholar
  30. 30.
    Kowalski, D., Malinowski, A.: How to Meet in Anonymous Network. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 44–58. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    Kranakis, E., Krizanc, D., Morin, P.: Randomized Rendez-Vous with Limited Memory. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 605–616. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Norris, N.: Universal covers of graphs: Isomorphism to depth n − 1 implies isomorphism to all depths. Discrete Applied Mathematics 56, 61–74 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Reingold, O.: Undirected connectivity in log-space. JACM 55, 1–24 (2008)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly universal exploration sequences. In: SODA 2007, pp. 599–608 (2007)Google Scholar
  36. 36.
    Yamashita, M., Kameda, T.: Computing on Anonymous Networks: Part I-Characterizing the Solvable Cases. IEEE Trans. Par. Distrib. Syst. 7, 69–89 (1996)CrossRefGoogle Scholar
  37. 37.
    Yamashita, M., Kameda, T.: Computing Functions on Asynchronous Anonymous Networks. Mathematical Systems Theory 29(4), 331–356 (1996)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Yamashita, M., Kameda, T.: Leader Election Problem on Networks in which Processor Identity Numbers Are Not Distinct. IEEE Trans. Parallel Distrib. Syst. 10(9), 878–887 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pierre Fraigniaud
    • 1
  • Andrzej Pelc
    • 2
  1. 1.CNRS and University Paris DiderotFrance
  2. 2.Université du Québec en OutaouaisCanada

Personalised recommendations