Logspace Computations in Graph Groups and Coxeter Groups

  • Volker Diekert
  • Jonathan Kausch
  • Markus Lohrey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7256)

Abstract

Computing normal forms in groups (or monoids) is in general harder than solving the word problem (equality testing). However, normal form computation has a much wider range of applications. It is therefore interesting to investigate the complexity of computing normal forms for important classes of groups. We show that shortlex normal forms in graph groups and in right-angled Coxeter groups can be computed in logspace. Graph groups are also known as free partially commutative groups or as right-angled Artin groups in the literature. (Artin groups can be realized as subgroups of Coxeter groups.) Graph groups arise in many areas and have a close connection to concurrency theory. The connection is used here. Indeed, for our result we use a representation of group elements by Mazurkiewicz traces. These are directed acyclic node-labelled graphs (i.e. pomsets). They form an algebraic model to describe runs of concurrent systems. Concurrent systems which are deterministic and co-deterministic can be studied via inverse monoids. As an application of our results we show that the word problem for free partially commutative inverse monoids is in logspace. This result generalizes a result of Ondrusch and the third author on free inverse monoids.

All Coxeter groups are linear, so the word problem can be solved in logspace, but it is open (in the non-right-angled case) whether shortlex normal forms can be computed in logspace, or, less demanding, whether they can be computed efficiently in parallel. We show that for all Coxeter groups the set of letters occurring in the shortlex normal form of an element can be computed in logspace.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Àlvarez, C., Gabarró, J.: The parallel complexity of two problems on concurrency. Inform. Process. Lett. 38, 61–70 (1991)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bestvina, M., Brady, N.: Morse theory and finiteness properties of groups. Invent. Math. 129, 445–470 (1997)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Björner, A., Brenti, F.: Combinatorics of Coxeter groups. Springer (2005)Google Scholar
  4. 4.
    Book, R., Otto, F.: String-Rewriting Systems. Springer (1993)Google Scholar
  5. 5.
    Brink, B., Howlett, R.B.: A finiteness property and an automatic structure for Coxeter groups. Math. Ann. 296, 179–190 (1993)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Cai, J.-Y.: Parallel computation over hyperbolic groups. In: Proceedings STOC 1992, pp. 106–115. ACM Press (1992)Google Scholar
  7. 7.
    Casselman, W.A.: Automata to perform basic calculations in Coxeter groups. In: C.M.S. Conference Proceedings, vol. 16 (1994)Google Scholar
  8. 8.
    Crisp, J., Godelle, E., Wiest, B.: The conjugacy problem in right-angled Artin groups and their subgroups. J. Topol. 2(3) (2009)Google Scholar
  9. 9.
    Crisp, J., Wiest, B.: Embeddings of graph braid and surface groups in right-angled artin groups and braid groups. Algebr. Geom. Topol. 4, 439–472 (2004)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Davis, M.W.: The geometry and topology of Coxeter groups. London Mathematical Society Monographs Series, vol. 32. Princeton University Press (2008)Google Scholar
  11. 11.
    Diekert, V.: Combinatorics on Traces. LNCS, vol. 454. Springer, Heidelberg (1990)MATHCrossRefGoogle Scholar
  12. 12.
    Diekert, V., Lohrey, M., Miller, A.: Partially commutative inverse monoids. Semigroup Forum 77, 196–226 (2008)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Diekert, V., Muscholl, A.: Solvability of equations in free partially commutative groups is decidable. Internat. J. Algebra Comput. 16, 1047–1070 (2006); Journal version of ICALP 2001. LNCS, vol. 2076, pp. 543–554 (2001)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Droms, C., Lewin, J., Servatius, H.: The length of elements in free solvable groups. Proc. Amer. Math. Soc. 119, 27–33 (1993)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Elder, M.: A linear-time algorithm to compute geodesics in solvable Baumslag-solitar groups. Illinois J. Math. 54, 109–128 (2010)MathSciNetMATHGoogle Scholar
  16. 16.
    Elder, M., Elston, G., Ostheimer, G.: On groups that have normal forms computable in logspace. AMS Sectional Meeting, Las Vegas (2011) (paper in preparation)Google Scholar
  17. 17.
    Elder, M., Rechnitzer, A.: Some geodesic problems in groups. Groups. Complexity. Cryptology 2, 223–229 (2010)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word Processing in Groups. Jones and Bartlett, Boston (1992)MATHGoogle Scholar
  19. 19.
    Ghrist, R., Peterson, V.: The geometry and topology of reconfiguration. Adv. in Appl. Math. 38, 302–323 (2007)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Hsu, T., Wise, D.T.: On linear and residual properties of graph products. Michigan Mathematical Journal 46(2), 251–259 (1999)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Lawson, M.V.: Inverse Semigroups: The Theory of Partial Symmetries. World Scientific (1999)Google Scholar
  22. 22.
    Lipton, R.J., Zalcstein, Y.: Word problems solvable in logspace. J. Assoc. Comput. Mach. 24, 522–526 (1977)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Lohrey, M.: Decidability and complexity in automatic monoids. Internat. J. Found. Comput. Sci. 16, 707–722 (2005)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Lohrey, M., Ondrusch, N.: Inverse monoids: Decidability and complexity of algebraic questions. Inf. Comput. 205, 1212–1234 (2007)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Miller III, C.F.: Decision problems for groups – survey and reflections. In: Algorithms and Classification in Combinatorial Group Theory, pp. 1–60. Springer (1992)Google Scholar
  26. 26.
    Munn, W.: Free inverse semigroups. Proc. London Math. Soc. 29, 385–404 (1974)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Myasnikov, A., Roman’kov, V., Ushakov, A., Vershik, A.: The word and geodesic problems in free solvable groups. Trans. Amer. Math. Soc. 362, 4655–4682 (2010)MathSciNetMATHGoogle Scholar
  28. 28.
    Papadimitriou, C.: Computation Complexity. Addison-Wesley (1994)Google Scholar
  29. 29.
    Paterson, M., Razborov, A.: The set of minimal braids is co-NP-complete. J. Algorithms 12, 393–408 (1991)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Simon, H.-U.: Word problems for groups and contextfree recognition. In: Proceedings FCT 1979, pp. 417–422. Akademie-Verlag (1979)Google Scholar
  31. 31.
    Veloso da Costa, A.A.: Γ-Produtos de Monóides e Semigrupos. PhD thesis, Universidade do Porto, Faculdade de Ciências (2003)Google Scholar
  32. 32.
    Waack, S.: Tape Complexity of Word Problems. In: FCT 1981. LNCS, vol. 117, pp. 467–471. Springer, Heidelberg (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Volker Diekert
    • 1
  • Jonathan Kausch
    • 1
  • Markus Lohrey
    • 2
  1. 1.FMIUniversität StuttgartGermany
  2. 2.Insitut für InformatikUniversität LeipzigGermany

Personalised recommendations