Two-Dimensional Range Diameter Queries

  • Pooya Davoodi
  • Michiel Smid
  • Freek van Walderveen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7256)

Abstract

Given a set of n points in the plane, range diameter queries ask for the furthest pair of points in a given axis-parallel rectangular range. We provide evidence for the hardness of designing space-efficient data structures that support range diameter queries by giving a reduction from the set intersection problem. The difficulty of the latter problem is widely acknowledged and is conjectured to require nearly quadratic space in order to obtain constant query time, which is matched by known data structures for both problems, up to polylogarithmic factors. We strengthen the evidence by giving a lower bound for an important subproblem arising in solutions to the range diameter problem: computing the diameter of two convex polygons, that are separated by a vertical line and are preprocessed independently, requires almost linear time in the number of vertices of the smaller polygon, no matter how much space is used. We also show that range diameter queries can be answered much more efficiently for the case of points in convex position by describing a data structure of size O(nlogn) that supports queries in O(logn) time.

References

  1. 1.
    Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Advances in Discrete and Computational Geometry. Contemporary Mathematics, vol. 223, pp. 1–56. AMS (1999)Google Scholar
  2. 2.
    Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures of points. Journal of the ACM 51(4), 606–635 (2004)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Aronov, B., Bose, P., Demaine, E.D., Gudmundsson, J., Iacono, J., Langerman, S., Smid, M.: Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 80–92. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Avis, D.: Diameter partitioning. Discrete & Computational Geometry 1(1), 265–276 (1986)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Avis, D., Toussaint, G.T., Bhattacharya, B.K.: On the multimodality of distances in convex polygons. Computers & Mathematics with Applications 8(2), 153–156 (1982)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. Journal of Algorithms 38(1), 91–109 (2001)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Capoyleas, V., Rote, G., Woeginger, G.J.: Geometric clusterings. Journal of Algorithms 12(2), 341–356 (1991)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Chan, T.M., Larsen, K.G., Pǎtraşcu, M.: Orthogonal range searching on the RAM, revisited. In: Proc. 27th Symp. on Comp. Geometry, pp. 1–10 (2011)Google Scholar
  9. 9.
    Cohen, H., Porat, E.: Fast set intersection and two-patterns matching. Theoretical Computer Science 411(40-42), 3795–3800 (2010)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Cohen, H., Porat, E.: On the hardness of distance oracle for sparse graph. The Computing Research Repository (arXiv), abs/1006.1117 (2010)Google Scholar
  11. 11.
    Edelsbrunner, H.: Computing the extreme distances between two convex polygons. Journal of Algorithms 6(2), 213–224 (1985)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Faloutsos, C., Lin, K.-I.: FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 163–174 (1995)Google Scholar
  13. 13.
    Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proc. 16th STOC, pp. 135–143 (1984)Google Scholar
  14. 14.
    Gupta, P.: Algorithms for Range-Aggregate Query Problems Involving Geometric Aggregation Operations. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 892–901. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Gupta, P., Janardan, R., Kumar, Y., Smid, M.H.M.: Data structures for range-aggregate extent queries. In: Proc. 20th CCCG, pp. 7–10 (2008)Google Scholar
  16. 16.
    Har-Peled, S.: A practical approach for computing the diameter of a point set. In: Proc. 17th Symp. on Comp. Geometry, pp. 177–186. ACM (2001)Google Scholar
  17. 17.
    Har-Peled, S., Wang, Y.: Shape fitting with outliers. SIAM Journal on Computing 33(2), 269–285 (2004)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Hong, S., Song, B., Lee, S.-H.: Efficient Execution of Range-Aggregate Queries in Data Warehouse Environments. In: Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp. 299–310. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On data structures and asymmetric communication complexity. Journal of Computer and System Sciences 57(1), 37–49 (1998)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Nekrich, Y., Smid, M.H.M.: Approximating range-aggregate queries using coresets. In: Proc. 22nd CCCG, pp. 253–256 (2010)Google Scholar
  21. 21.
    Preparata, F., Shamos, M.: Computational geometry: an introduction. Texts and monographs in computer science, Section 4.2.3. Springer, Heidelberg (1991)Google Scholar
  22. 22.
    Pǎtraşcu, M., Roditty, L.: Distance oracles beyond the Thorup-Zwick bound. In: Proc. 51st FOCS, pp. 815–823 (2010)Google Scholar
  23. 23.
    Rahul, S., Das, A.S., Rajan, K.S., Srinathan, K.: Range-Aggregate Queries Involving Geometric Aggregation Operations. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp. 122–133. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pooya Davoodi
    • 1
  • Michiel Smid
    • 2
  • Freek van Walderveen
    • 1
  1. 1.MADALGO, Department of Computer ScienceAarhus UniversityDenmark
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations