On the Logic of Lying

  • Hans van Ditmarsch
  • Jan van Eijck
  • Floor Sietsma
  • Yanjing Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7010)

Abstract

We model lying as a communicative act changing the beliefs of the agents in a multi-agent system. With Augustine, we see lying as an utterance believed to be false by the speaker and uttered with the intent to deceive the addressee. The deceit is successful if the lie is believed after the utterance by the addressee. This is our perspective. Also, as common in dynamic epistemic logics, we model the agents addressed by the lie, but we do not (necessarily) model the speaker as one of those agents. This further simplifies the picture: we do not need to model the intention of the speaker, nor do we need to distinguish between knowledge and belief of the speaker: he is the observer of the system and his beliefs are taken to be the truth by the listeners. We provide a sketch of what goes on logically when a lie is communicated. We present a complete logic of manipulative updating, to analyse the effects of lying in public discourse. Next, we turn to the study of lying in games. First, a game-theoretical analysis is used to explain how the possibility of lying makes games such as Liar’s Dice interesting, and how lying is put to use in optimal strategies for playing the game. This is the opposite of the logical manipulative update: instead of always believing the utterance, now, it is never believed. We also give a matching logical analysis for the games perspective, and implement that in the model checker DEMO. Our running example of lying in games is the game of Liar’s Dice.

Keywords

Nash Equilibrium Action Model Actual World True Belief Belief Revision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K.: Logic programming. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 493–574. Elsevier, Amsterdam (1990)Google Scholar
  2. 2.
    Arendt, H.: Truth and politics. In: Between Past and Future — Six Exercises in Political Thought. Viking Press (1967) (Penguin Classics Edition, 2006)Google Scholar
  3. 3.
    Augustine, S.: De Mendacio. In: Schaff, P. (ed.) A Select Library of the Nicene and Post-Nicene Fathers of the Christian Church, Eerdmans, vol. 3 (1956); translated by Rev. H. Browne (1988), http://www.newadvent.org/fathers/
  4. 4.
    Baltag, A.: A logic for suspicious players: epistemic action and belief-updates in games. Bulletin of Economic Research 54(1), 1–45 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baltag, A., Moss, L.: Logics for epistemic programs. Synthese 139(2), 165–224 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common knowledge, and private suspicions. Tech. Rep. SEN-R9922, CWI, Amsterdam (1999); with many updatesGoogle Scholar
  7. 7.
    Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common knowledge, and private suspicions. Tech. rep., Dept. of Cognitive Science, Indiana University and Dept. of Computing, Oxford University (2003)Google Scholar
  8. 8.
    Baltag, A., Smets, S.: The logic of conditional doxastic actions. In: Apt, K., van Rooij, R. (eds.) New Perspectives on Games and Interaction. Texts in Logic and Games, vol. 4. University Press, Amsterdam (2008)Google Scholar
  9. 9.
    van Benthem, J.: Language, logic, and communication. In: van Benthem, J., Dekker, P., van Eijck, J., de Rijke, M., Venema, Y. (eds.) Logic in Action. ILLC, pp. 7–25 (2001)Google Scholar
  10. 10.
    van Benthem, J.: One is a lonely number: on the logic of communication. In: Chatzidakis, Z., Koepke, P., Pohlers, W. (eds.) Logic Colloquium 2002, pp. 96–129. A.K. Peters, Wellesley (2006)Google Scholar
  11. 11.
    van Benthem, J., Gerbrandy, J., Kooi, B.: Dynamic update with probabilities. Studia Logica 93, 67–96 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change. Information and Computation 204(11), 1620–1662 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bok, S.: Lying — Moral Choice in Public and Private Life. The Harvester Press, Sussex (1978)Google Scholar
  14. 14.
    van Ditmarsch, H.: Comments on ‘the logic of conditional doxastic actions’. In: Apt, K., van Rooij, R. (eds.) New Perspectives on Games and Interaction. Texts in Logic and Games, vol. 4, pp. 33–44. Amsterdam University Press (2008)Google Scholar
  15. 15.
    van Ditmarsch, H.: Knowledge Games. PhD thesis, University of Groningen (2000)Google Scholar
  16. 16.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic epistemic logic with assignment. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2005), pp. 141–148. ACM Inc., New York (2005)CrossRefGoogle Scholar
  17. 17.
    van Eijck, J.: Guarded actions. Tech. Rep. SEN-E0425, CWI, Amsterdam (December 2004), http://repository.cwi.nl/
  18. 18.
    van Eijck, J.: DEMO — a demo of epistemic modelling. In: van Benthem, J., Gabbay, D., Löwe, B. (eds.) Interactive Logic — Proceedings of the 7th Augustus de Morgan Workshop. Texts in Logic and Games, vol. (1), pp. 305–363. Amsterdam University Press (2007)Google Scholar
  19. 19.
    van Eijck, J., Wang, Y.: Propositional Dynamic Logic as a Logic of Belief Revision. In: Hodges, W., de Queiroz, R. (eds.) WOLLIC 2008. LNCS (LNAI), vol. 5110, pp. 136–148. Springer, Heidelberg (2008)Google Scholar
  20. 20.
    Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press (1995)Google Scholar
  21. 21.
    Gerbrandy, J.: Bisimulations on Planet Kripke. PhD thesis, ILLC, Amsterdam (1999)Google Scholar
  22. 22.
    Gerbrandy, J.: The surprise examination in dynamic epistemic logic. Synthese 155, 21–33 (2007)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Gettier, E.: Is justified true belief knowledge? Analysis 23, 121–123 (1963)CrossRefGoogle Scholar
  24. 24.
    Kooi, B.: Expressivity and completeness for public update logics via reduction axioms. Journal of Applied Non-Classical Logics 16(2) (2007)Google Scholar
  25. 25.
    Kooi, B.P.: Knowledge, Chance, and Change. PhD thesis, Groningen University (2003)Google Scholar
  26. 26.
    Montague, P.: A new disinformation campaign. New York Times (April 29, 1998)Google Scholar
  27. 27.
    Plaza, J.A.: Logics of public communications. In: Emrich, M.L., Pfeifer, M.S., Hadzikadic, M., Ras, Z.W. (eds.) Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems, pp. 201–216 (1989)Google Scholar
  28. 28.
    Renardel de Lavalette, G.: Changing modalities. Journal of Logic and Computation 14(2), 253–278 (2004)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Sakama, C., Caminada, M., Herzig, A.: A Logical Account of Lying. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 286–299. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Sietsma, F.: Model checking for dynamic epistemic logic with factual change. Bachelor’s Thesis, University of Amsterdam (2007)Google Scholar
  31. 31.
    Wang, Y.: Epistemic Modelling and Protocol Dynamics. PhD thesis, ILLC, Amsterdam (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hans van Ditmarsch
    • 1
    • 2
  • Jan van Eijck
    • 3
  • Floor Sietsma
    • 4
  • Yanjing Wang
    • 5
  1. 1.University of SevillaSpain
  2. 2.Institute of Mathematical Sciences (IMSc)ChennaiIndia
  3. 3.Centrum Wiskunde & Informatica (CWI) and ILLCAmsterdamThe Netherlands
  4. 4.Centrum Wiskunde & Informatica (CWI)AmsterdamThe Netherlands
  5. 5.Peking UniversityBeijingChina

Personalised recommendations