Model Checking: One Can Do Much More Than You Think!
Abstract
Model checking is an automated verification technique that actively is applied to find bugs in hardware and software designs. Companies like IBM and Cadence developed their in-house model checkers, and acted as driving forces behind the design of the IEEE-standardized temporal logic PSL. On the other hand, model checking C-, C#- and .NET-program code is an intensive research topic at, for instance, Microsoft and NASA. In this short paper, we briefly discuss three non-standard applications of model checking. The first example is taken from systems biology and shows the relevance of probabilistic reachability. Then, we show how to determine the optimal scheduling policy for multiple-battery systems so as to optimize the system’s lifetime. Finally, we discuss a stochastic job scheduling problem that —thanks to recent developments— can be solved using model checking.
Keywords
Model Check Idle Period Symbolic Model Check Reachability Problem Battery LifetimePreview
Unable to display preview. Download preview PDF.
References
- 1.Alur, R., Torre, S.L., Pappas, G.J.: Optimal paths in weighted timed automata. Theor. Comput. Sci. 318(3), 297–322 (2004)MATHCrossRefGoogle Scholar
- 2.Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)Google Scholar
- 3.Baier, C., Katoen, J.-P., Hermanns, H.: Approximate Symbolic Model Checking of Continuous-Time Markov Chains (Extended Abstract). In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 146–161. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 4.Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager, F.W.: Minimum-Cost Reachability for Priced Timed Automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 5.Bruno, J.L., Downey, P.J., Frederickson, G.N.: Sequencing tasks with exponential service times to minimize the expected flow time or makespan. J. ACM 28(1), 100–113 (1981)MathSciNetMATHCrossRefGoogle Scholar
- 6.Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)Google Scholar
- 7.Clarke, E.M., Schlingloff, H.: Model checking. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, ch.24, pp. 1635–1790 (2000)Google Scholar
- 8.Grumberg, O., Veith, H. (eds.): 25 Years of Model Checking. LNCS, vol. 5000. Springer, Heidelberg (2008)MATHGoogle Scholar
- 9.Jongerden, M.R., Haverkort, B.R., Bohnenkamp, H.C., Katoen, J.-P.: Maximizing System Lifetime by Battery Scheduling. In: 39th IEEE/IFIP Conf. on Dependable Systems and Networks (DSN), pp. 63–72. IEEE Computer Society (2009)Google Scholar
- 10.Jongerden, M.R., Mereacre, A., Bohnenkamp, H.C., Haverkort, B.R., Katoen, J.-P.: Computing optimal schedules for battery usage in embedded systems. IEEE Trans. Industrial Informatics 5(3), 276–286 (2010)CrossRefGoogle Scholar
- 11.Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Abstraction for Stochastic Systems by Erlang’s Method of Stages. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 279–294. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 12.Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104 (2011)CrossRefGoogle Scholar
- 13.Klink, D., Remke, A., Haverkort, B.R., Katoen, J.-P.: Time-bounded reachability in tree-structured QBDs by abstraction. Perform. Eval. 68(2), 105–125 (2011)CrossRefGoogle Scholar
- 14.Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: probabilistic model checking for performance and reliability analysis. SIGMETRICS Performance Evaluation Review 36(4), 40–45 (2009)CrossRefGoogle Scholar
- 15.Manwell, J., McGowan, J.: Lead acid battery storage model for hybrid energy systems. Solar Energy 50(5), 399–405 (1993)CrossRefGoogle Scholar
- 16.Neuhäußer, M.R.: Model Checking Nondeterministic and Randomly Timed Systems. PhD thesis, RWTH Aachen University and University of Twente (2010)Google Scholar
- 17.Neuhäußer, M.R., Stoelinga, M., Katoen, J.-P.: Delayed Nondeterminism in Continuous-Time Markov Decision Processes. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 364–379. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 18.Neuhäußer, M.R., Zhang, L.: Time-bounded reachability probabilities in continuous-time Markov decision processes. In: 7th Int. Conf. on the Quantitative Evaluation of Systems (QEST), pp. 209–218. IEEE Computer Society (2010)Google Scholar
- 19.Nino-Mora, J.: Stochastic scheduling. In: Encyclopedia of Optimization, vol. V, pp. 367–372. Springer, Heidelberg (2001)Google Scholar