A Service Oriented Experimentation Framework for Virtualized WiMAX Systems

  • Gautam Bhanage
  • Ivan Seskar
  • Dipankar Raychaudhuri
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 90)

Abstract

Testbeds for networking research allow experimenters to validate performance of algorithms and architectures under realistic conditions. Further, virtualizing such testbeds allows the deployer to improve utilization of the testbed while preserving reproducibility of the results and originality of the control environment. This paper describes an essential set of services for deploying a virtualized wireless testbed. It proposes (1) environment control, (2) virtual radio control, (3) slice feedback, and (4) a virtual radio isolation service as four fundamental services required for deploying these virtualized wireless testbeds. Using a virtualized WiMAX basestation as an example, this paper describes the design of the WiMAX-VM and the WiMAX-RF grid services which encompass the four fundamental services.

Keywords

Virtual Machine Control Framework Case Diagram WiMAX Network Radio Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhanage, G., Seskar, I., Mahindra, R., Raychaudhuri, D.: Virtual Basestation: architecture for an open shared wimax framework. In: ACM Sigcomm Conference, VISA Workshop, New Delhi, India (September 2010)Google Scholar
  2. 2.
    Raychaudhuri, D., Seskar, I., Ott, M., Ganu, S., Ramachandran, K., Kremo, H., Siracusa, R., Liu, H., Singh, M.: Overview of the ORBIT radio grid testbed for evaluation of next-generation wireless network protocols. In: WCNC (March 2005)Google Scholar
  3. 3.
    VINI, a virtual network infrastructure, http://www.vini-veritas.net/
  4. 4.
    White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed systems and networks. In: Proceedings of OSDI, Boston (December 2002)Google Scholar
  5. 5.
    Peterson, L., Muir, S., Roscoe, T., Klingaman, A.: PlanetLab Architecture: An Overview. Technical Report PDN–06–031, PlanetLab Consortium (May 2006)Google Scholar
  6. 6.
    The geni orca control framework, http://www.nicl.cs.duke.edu/orca/
  7. 7.
    GENI design principles, http://www.geni.net/
  8. 8.
    Hibler, M., Ricci, R., Stoller, L., Duerig, J., Guruprasad, S., Stacky, T., Webby, K., Lepreau, J.: Large-scale Virtualization in the Emulab Network Testbed. In: Proceedings of USENIX (2008)Google Scholar
  9. 9.
    Mahindra, R., Bhanage, G., Hadjichristofi, G., Seskar, I., Raychaudhuri, D., Zhang, Y.: Space Versus Time Separation for wireless virtualization On an Indoor Grid. In: Next Generation Internet (NGI) testbeds (March 2008)Google Scholar
  10. 10.
    Mahindra, R., Bhanage, G., Hadjichristofi, G., Ganu, S., Kamat, P., Seskar, I., Raychaudhuri, D.: Integration of heterogeneous networking testbeds. In: Proceedings of TridentCom 2008, pp. 1–6 (2008)Google Scholar
  11. 11.
    Bhanage, G., Seskar, I., Zhang, Y., Raychaudhuri, D., Jain, S.: Experimental evaluation of openvz from a testbed deployment perspective. In: 6th International Conference of Testbeds and Research Infrastructure (ICST Tridentcom), Berlin, Germany (May 2010)Google Scholar
  12. 12.
    Kokku, R., Mahindra, R., Zhang, H., Rangarajan, S.: Nvs: a virtualization substrate for wimax networks. In: Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking, MobiCom 2010, pp. 233–244. ACM, New York (2010)Google Scholar
  13. 13.
    Bhanage, G., Vete, D., Seskar, I., Raychaudhuri, D.: SplitAP: leveraging wireless network virtualization for flexible sharing of WLANs. In: IEEE Globecom 2010 - Next Generation Networking Symposium (GC10 - NGN), Miami, Florida, USA (December 2010)Google Scholar
  14. 14.
    Smith, G., Chaturvedi, A., Mishra, A., Banerjee, S.: Wireless virtualization on commodity 802.11 hardware. In: Proceedings of Wintech, pp. 75–82. ACM, New York (2007)CrossRefGoogle Scholar
  15. 15.
    Chandra, R.: Multinet: Connecting to multiple ieee 802.11 networks using a single wireless card. In: IEEE INFOCOM, Hong Kong (2004)Google Scholar
  16. 16.
    Rakotoarivelo, T., Ott, M., Jourjon, G., Seskar, I.: Omf: a control and management framework for networking testbeds. SIGOPS Oper. Syst. Rev. 43, 54–59 (2010)CrossRefGoogle Scholar
  17. 17.
    OpenVZ instruction manual, http://wiki.openvz.org/
  18. 18.
    Kernel virtual machines, http://www.linux-kvm.org/page/Main_Page
  19. 19.
    Bhanage, G., Daya, R., Seskar, I., Raychaudhuri, D.: VNTS: a virtual network traffic shaper for air time fairness in 802:16e slices. In: IEEE ICC - Wireless and Mobile Networking Symposium, South Africa (May 2010)Google Scholar
  20. 20.
    Unified modeling language 2.2, http://www.omg.org/spec/UML/2.2/

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Gautam Bhanage
    • 1
  • Ivan Seskar
    • 1
  • Dipankar Raychaudhuri
    • 1
  1. 1.WINLABRutgers UniversityNorth BrunswickUSA

Personalised recommendations