Advertisement

Low-Cost Microdevices for Point-of-Care Testing

  • Curtis D. Chin
  • Sau Yin Chin
  • Tassaneewan Laksanasopin
  • Samuel K. Sia
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Microdevices enable clinical diagnostics to be miniaturized for use at the point-of-care (POC). Microdevices can be composed of microfilters, microchannels, microarrays, micropumps, microvalves, and microelectronics, and these mechanical and electrical components can be integrated onto chips to analyze and control biological objects at the microscale. The miniaturization of diagnostic tests offers many advantages over centralized laboratory testing, such as small reagent volumes, rapid analysis, small size, low power consumption, parallel analysis, and functional integration of multiple devices. Here, we review work on the development of microdevices to diagnose disease at POC settings.

Keywords

Microfluidic Device Microfluidic Chip Noncommunicable Disease Recombinase Polymerase Amplification Nucleic Acid Testing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.N. Floriano, Microchip-based assay systems: methods and applications: (Humana Press, Totowa, 2007)CrossRefGoogle Scholar
  2. 2.
    L.J. Kricka, Microchips, microarrays, biochips and nanochips: personal laboratories for the 21st century, Clin. Chim. Acta 307, 219–223 (2001).CrossRefGoogle Scholar
  3. 3.
    J. Lii, W. Hsu, W. Lee and S.K. Sia, Microfluidics, in Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, New York, 2006)Google Scholar
  4. 4.
    P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, and B.H. Weigl, Microfluidic diagnostic technologies for global public health. Nature 442, 412–418 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    C.D. Chin, V. Linder, and S.K. Sia, Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab on a Chip 7, 41–57 (2007)CrossRefGoogle Scholar
  6. 6.
    P. Yager, G.J. Domingo, and J. Gerdes, Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 10, 107–144 (2008)CrossRefGoogle Scholar
  7. 7.
    S.K. Sia and L.J. Kricka, Microfluidics and point-of-care testing. Lab Chip 8, 1982–1983 (2008)CrossRefGoogle Scholar
  8. 8.
    G.M. Whitesides, The origins and the future of microfluidics. Nature 442, 368–373 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    J.B. Angell, S.C. Terry, and P.W. Barth, Silicon Micromechanical Devices. Sci. Am. 248, 44-55 (1983)Google Scholar
  10. 10.
    D. Mabey, R.W. Peeling, A. Ustianowski, and M.D. Perkins, Diagnostics for the developing world. Nat. Rev. Microbiol. 2 231–40 (2004)CrossRefGoogle Scholar
  11. 11.
    I.R. Lauks, Microfabricated biosensors and microanalytical systems for blood analysis. Acc. of Chem. Res. 31, 317–324 (1998)CrossRefGoogle Scholar
  12. 12.
    A.J. Tudos, G.A.J. Besselink, and R.B.M. Schasfoort, Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1, 83–95 (2001)CrossRefGoogle Scholar
  13. 13.
    P. Belgrader, S. Young, B. Yuan, M. Primeau, L.A. Christel, F. Pourahmadi, and M.A. Northrup, A battery-powered notebook thermal cycler for rapid multiplex real-time PCR analysis. Anal. Chem. 73 286, 391 (2001)Google Scholar
  14. 14.
    C.T. Culbertson, Y. Tugnawat, A.R. Meyer, G.T. Roman, J.M. Ramsey, and S.R. Gonda, Microchip separations in reduced-gravity and hypergravity environments. Anal. Chem. 77, 7933–7940 (2005)CrossRefGoogle Scholar
  15. 15.
    A.M. Skelley, J.R. Scherer, A.D. Aubrey, W.H. Grover, R.H.C. Ivester, P. Ehrenfreund, F.J. Grunthaner, J.L. Bada, and R.A. Mathies, Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars, Proc. Natl. Acad. Sci. 102, 1041–1046 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    T. Akiyama, S. Gautsch, N.F. de Rooij, U. Staufer, P. Niedermann, L. Howald, D. Muller, A. Tonin, H.R. Hidber, W.T. Pike, and M.H. Hecht, Atomic force microscope for planetary applications. Sensor. Actuat. A-Phys. 91, 321–325 (2001)CrossRefGoogle Scholar
  17. 17.
    WHO, The global burden of disease: 2004 update (World Health Organization, Geneva, 2008)Google Scholar
  18. 18.
    D.A. Hall, J. Ptacek, and M. Snyder, Protein microarray technology. Mech. Ageing Dev. 128, 161–167 (2007)CrossRefGoogle Scholar
  19. 19.
    P. Madhivanan, K. Krupp, J. Hardin, C. Karat, J.D. Klausner, and A.L. Reingold, Simple and inexpensive point-of-care tests improve diagnosis of vaginal infections in resource constrained settings. Trop. Med. Int. Health 14, 703–708 (2009)CrossRefGoogle Scholar
  20. 20.
    P. von Lode, Point-of-care immunotesting: Approaching the analytical performance of central laboratory methods. Clin. Biochem. 38, 591–606 (2005)CrossRefGoogle Scholar
  21. 21.
    P.N. Floriano, N. Christodoulides, C.S. Miller, J.L. Ebersole, J. Spertus, B.G. Rose, D.F. Kinane, M.J. Novak, S. Steinhubl, S. Acosta, S. Mohanty, P. Dharshan, C.K. Yeh, S. Redding, W. Furmaga, and J.T. McDevitt, Use of Saliva-Based Nano-Biochip Tests for Acute Myocardial Infarction at the Point of Care: A Feasibility Study. Clin. Chem. 55, 1530–1538 (2009)CrossRefGoogle Scholar
  22. 22.
    M. Radisic, R.K. Iyer, and S.K. Murthy, Micro- and nanotechnology in cell separation. Int. J. Nanomedicine 1, 3–14 (2006)CrossRefGoogle Scholar
  23. 23.
    P. Sethu, M. Anahtar, L.L. Moldawer, R.G. Tompkins, and M. Toner, Continuous row microfluidic device for rapid erythrocyte lysis. Anal. Chem. 76, 6247–6253 (2004)CrossRefGoogle Scholar
  24. 24.
    X. Chen, D.F. Cui, C.C. Liu, H. Li, and J. Chen, Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Anal. Chim. Acta 584, 237–243 (2007)CrossRefGoogle Scholar
  25. 25.
    A. Niemz, T.M. Ferguson, and D.S. Boyle, Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 29, 240–250 (2011)CrossRefGoogle Scholar
  26. 26.
    R.D. Johnson, V.G. Gaualas, S. Daunert, and L.G. Bachas, Microfluidic ion-sensing devices. Anal. Chim. Acta 613, 20–30 (2008)CrossRefGoogle Scholar
  27. 27.
    J. Moorthy and D.J. Beebe, A hydrogel readout for autonomous detection of ions in microchannels. Lab Chip 2, 76–80 (2002)CrossRefGoogle Scholar
  28. 28.
    R.J. Meagher, A.V. Hatch, R.F. Renzi, and A.K. Singh, An integrated microfluidic platform for sensitive and rapid detection of biological toxins. Lab Chip 8 2046–53 (2008)CrossRefGoogle Scholar
  29. 29.
    H. Parsa, C.D. Chin, P. Mongkolwisetwara, B.W. Lee, J.J. Wang, and S.K. Sia, Effect of volume- and time-based constraints on capture of analytes in microfluidic heterogeneous immunoassays. Lab Chip 8, 2062–2070 (2008)CrossRefGoogle Scholar
  30. 30.
    S.K. Sia, V. Linder, B.A. Parviz, A. Siegel, and G.M. Whitesides, An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angew. Chem. Int. Ed. Engl. 43, 498–502 (2004)CrossRefGoogle Scholar
  31. 31.
    C.D. Chin, T. Laksanasopin, Y.K. Cheung, D. Steinmiller, V. Linder, H. Parsa, J.J. Wang, H. Moore, R. Rouse, G. Umviligihozo, E. Karita, L. Mwamarangwe, S. Braunstein, J.V.D. Wijgert, R. Sahabo, J. Justman, W. El-Sadr, and S.K. Sia, Microfluidics-based diagnostics of infectious diseases in the developing world. Nat. Med. 17, 1015–1019 (2011)CrossRefGoogle Scholar
  32. 32.
    T. Thorsen, S.J. Maerkl, and S.R. Quake, Microfluidic large-scale integration Science 298, 580–584 (2002)Google Scholar
  33. 33.
    M. Herrmann, E. Roy, T. Veres, and M. Tabrizian, Microfluidic ELISA on non-passivated PDMS chip using magnetic bead transfer inside dual networks of channels. Lab Chip 7, 1546–1552 (2007)CrossRefGoogle Scholar
  34. 34.
    K.A. Addae-Mensah, Y.K. Cheung, V. Fekete, M.S. Rendely, and S.K. Sia, Actuation of elastomeric microvalves in point-of-care settings using handheld, battery-powered instrumentation. Lab Chip 10, 1618–1622 (2010)CrossRefGoogle Scholar
  35. 35.
    D.B. Weibel, M. Kruithof, S. Potenta, S.K. Sia, A. Lee, and G.M. Whitesides, Torque-actuated valves for microfluidics Anal. Chem. 77 4726–4733 (2005)Google Scholar
  36. 36.
    J. Ziegler, M. Zimmermann, P. Hunziker, and E. Delamarche, High-performance immunoassays based on through-stencil patterned antibodies and capillary systems. Anal. Chem. 80, 1763–1769 (2008)CrossRefGoogle Scholar
  37. 37.
    L. Gervais and E. Delamarche, Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 9, 3330–3337 (2009)CrossRefGoogle Scholar
  38. 38.
    J. Moorthy, G.A. Mensing, D. Kim, S. Mohanty, D.T. Eddington, W.H. Tepp, E.A. Johnson, and D.J. Beebe, Microfluidic tectonics platform: A colorimetric, disposable botulinum toxin enzyme-linked immunosorbent assay system. Electrophoresis 25, 1705–1713 (2004)CrossRefGoogle Scholar
  39. 39.
    V. Linder, S.K. Sia, and G.M. Whitesides, Reagent-loaded cartridges for valveless and automated fluid delivery in microfluidic devices. Anal. Chem. 77, 64–71 (2005)CrossRefGoogle Scholar
  40. 40.
    D. Juncker, H. Schmid, U. Drechsler, H. Wolf, M. Wolf, B. Michel, N. de Rooij, and E. Delamarche, “Autonomous microfluidic capillary system, Anal. Chem. 74 6139–6144 (2002)CrossRefGoogle Scholar
  41. 41.
    K.Y. Weng, N.J. Chou, and J.W. Cheng, Triggering vacuum capillaries for pneumatic pumping and metering liquids in point-of-care immunoassays. Lab Chip 8, 1216–1219 (2008)CrossRefGoogle Scholar
  42. 42.
    C.M. Cheng, A. W. Martinez, J. Gong, C.R. Mace, S.T. Phillips, E. Carrilho, K.A. Mirica, and G.M. Whitesides, Paper-based ELISA. Angew. Chem. Int. Ed. Engl. 49, 4771–4774 (2010)CrossRefGoogle Scholar
  43. 43.
    A.E. Herr, A.V. Hatch, D.J. Throckmorton, H.M. Tran, J.S. Brennan, W.V. Giannobile, and A.K. Singh, Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proc. Natl. Acad. Sci. U. S. A. 104, 5268–5273 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    B.S. Lee, Y.U. Lee, H.S. Kim, T.H. Kim, J. Park, J.G. Lee, J. Kim, H. Kim, W.G. Lee, and Y.K. Cho, Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and immunoassay from whole blood. Lab Chip 11, 70–78 (2011)CrossRefGoogle Scholar
  45. 45.
    H. Tsutsui and C.M. Ho, Cell separation by non-inertial force fields in microfluidic systems. Mech. Res. Commun. 36, 92–103 (2009)CrossRefGoogle Scholar
  46. 46.
    V. VanDelinder and A. Groisman, Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. Anal. Chem. 78, 3765–3771 (2006)CrossRefGoogle Scholar
  47. 47.
    N.N. Ma, K.W. Koelling, and J.J. Chalmers, Fabrication and use of a transient contractional flow device to quantify the sensitivity of mammalian and insect cells to hydrodynamic forces. Biotechnol. Bioeng. 80, 428–437 (2002)CrossRefGoogle Scholar
  48. 48.
    I. Doh and Y.H. Cho, A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sensor. Actuat. A-Phys. 121, 59–65 (2005)CrossRefGoogle Scholar
  49. 49.
    M.M. Wang, E. Tu, D.E. Raymond, J.M. Yang, H.C. Zhang, N. Hagen, B. Dees, E.M. Mercer, A.H. Forster, I. Kariv, P.J. Marchand, and W.F. Butler, Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol. 23, 83–87 (2005)CrossRefGoogle Scholar
  50. 50.
    Y. Sai, M. Yamada, M. Yasuda, and M. Seki, Continuous separation of particles using a microfluidic device equipped with flow rate control valves. J. Chromatogr. A 1127, 214–220 (2006)CrossRefGoogle Scholar
  51. 51.
    F. Petersson, L. Aberg, A.M. Sward-Nilsson, and T. Laurell, Free flow acoustophoresis: Microfluidic-based mode of particle and cell separation. Anal. Chem. 79 5117–5123 (2007)CrossRefGoogle Scholar
  52. 52.
    X.H. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R.G. Tompkins, W. Rodriguez, and M. Toner, A microfluidic device for practical label-free CD4+T cell counting of HIV-infected subjects. Lab Chip 7, 170–178 (2007)CrossRefGoogle Scholar
  53. 53.
    A. Osei-Bimpong, C. Jury, R. McLean, and S.M. Lewis, Point-of-care method for total white cell count: an evaluation of the HemoCue WBC device. Int. J. Lab. Hematol. 31, 657–664 (2009)CrossRefGoogle Scholar
  54. 54.
    L.V. Rao, B.A. Ekberg, D. Connor, F. Jakubiak, G.M. Vallaro, and M. Snyder, “Evaluation of a new point of care automated complete blood count (CBC) analyzer in various clinical settings. Clin. Chim. Acta. 389, 120–125 (2008)CrossRefGoogle Scholar
  55. 55.
    X. Cheng, Y.S. Liu, D. Irimia, U. Demirci, L. Yang, L. Zamir, W.R. Rodriguez, M. Toner, and R. Bashir, Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices. Lab Chip 7, 746–755 (2007)CrossRefGoogle Scholar
  56. 56.
    J.V. Jokerst, P.N. Floriano, N. Christodoulides, G.W. Simmons, and J.T. McDevitt, Integration of semiconductor quantum dots into nano-bio-chip systems for enumeration of CD4 + T cell counts at the point-of-need. Lab Chip 8, 2079–2090 (2008)CrossRefGoogle Scholar
  57. 57.
    D. Schafer, E.A. Gibson, E.A. Salim, A.E. Palmer, R. Jimenez, and J. Squier, Microfluidic cell counter with embedded optical fibers fabricated by femtosecond laser ablation and anodic bonding. Opt. Express 17, 6068–6073 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    S. Mtapuri-Zinyowera, M. Chideme, D. Mangwanya, O. Mugurungi, S. Gudukeya, K. Hatzold, A. Mangwiro, G. Bhattacharya, J. Lehe, and T. Peter, Evaluation of the PIMA point-of-care CD4 analyzer in VCT clinics in Zimbabwe. J. Acquir. Immune. Defic. Syndr. 55, 1–7 (2010)CrossRefGoogle Scholar
  59. 59.
    Z. Wang, S.Y. Chin, C.D. Chin, J. Sarik, M. Harper, J. Justman, and S.K. Sia, Microfluidic CD4 + T-cell counting device using chemiluminescence-based detection. Anal. Chem. 82, 36–40 (2010)CrossRefGoogle Scholar
  60. 60.
    T.M. Lee and I.M. Hsing, DNA-based bioanalytical microsystems for handheld device applications. Anal. Chim. Acta. 556, 26–37 (2006)CrossRefGoogle Scholar
  61. 61.
    M.A. Dineva, L. MahiLum-Tapay, and H. Lee, Sample preparation: a challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings. Analyst 132, 1193–1199 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    L. Chen, A. Manz, and P.J. Day, Total nucleic acid analysis integrated on microfluidic devices. Lab Chip 7, 1413–1423 (2007)CrossRefGoogle Scholar
  63. 63.
    F.M. Ausubel et al., Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology (Wiley, New York, 1992)Google Scholar
  64. 64.
    C. Lui, N.C. Cady, and C.A. Batt, Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems. Sensors 9, 3713–3744 (2009)CrossRefGoogle Scholar
  65. 65.
    A.G. Crevillen, M. Hervas, M.A. Lopez, M.C. Gonzalez, and A. Escarpa, Real sample analysis on microfluidic devices. Talanta 74, 342–357 (2007)CrossRefGoogle Scholar
  66. 66.
    J.S. Marcus, W.F. Anderson, and S.R. Quake, Microfluidic single-cell mRNA isolation and analysis. Anal. Chem. 78, 3084–3089 (2006)CrossRefGoogle Scholar
  67. 67.
    L.A. Christel, K. Petersen, W. McMillan, and M.A. Northrup, Rapid, automated nucleic acid probe assays using silicon microstructures for nucleic acid concentration. J. Biomech. Eng-Trans. ASME 121, 22–27 (1999)CrossRefGoogle Scholar
  68. 68.
    WHO, Roadmap for rolling out Xpert MTB/RIF for rapid diagnosis of TB and MDR-TB (World Health Organization, Geneva, 2010). 6 Dec 2010Google Scholar
  69. 69.
    C.C. Boehme, P. Nabeta, D. Hillemann, M.P. Nicol, S. Shenai, F. Krapp, J. Allen, R. Tahirli, R. Blakemore, R. Rustomjee, A. Milovic, M. Jones, S.M. O’Brien, D.H. Persing, S. Ruesch-Gerdes, E. Gotuzzo, C. Rodrigues, D. Alland, and M.D. Perkins, Rapid molecular detection of tuberculosis and rifampin resistance. N. Engl. J. Med. 363, 1005–1015 (2010)CrossRefGoogle Scholar
  70. 70.
    C.S. Zhang, J.L. Xu, W.L. Ma, and W.L. Zheng, PCR microfluidic devices for DNA amplification. Biotechnol. Adv. 24, 243–284 (2006)CrossRefGoogle Scholar
  71. 71.
    N.C. Cady, S. Stelick, M.V. Kunnavakkam, and C.A. Batt, Real-time PCR detection of Listeria monocytogenes using an integrated microfluidics platform. Sensor. Actuat. B-Chem. 107, 332–341 (2005)CrossRefGoogle Scholar
  72. 72.
    D. Braun, PCR by thermal convection. Mod. Phys. Lett. B 18, 775–784 (2004)ADSCrossRefGoogle Scholar
  73. 73.
    D.S. Lee, S.H. Park, H.S. Yang, K.H. Chung, T.H. Yoon, S.J. Kim, K. Kim, and Y.T. Kim, Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption. Lab Chip 4, 401–407 (2004)CrossRefGoogle Scholar
  74. 74.
    J. Van Ness, L.K. Van Ness, and D.J. Galas, Isothermal reactions for the amplification of oligonucleotides. Proc. Natl. Acad. Sci. U. S. A. 100, 4504–4509 (2003)ADSCrossRefGoogle Scholar
  75. 75.
    T.A. Taton, C.A. Mirkin, and R.L. Letsinger, Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000)ADSCrossRefGoogle Scholar
  76. 76.
    E. Schleicher, The clinical chemistry laboratory: current status, problems and diagnostic prospects. Anal. Bioanal. Chem. 384, 124–131 (2006)CrossRefGoogle Scholar
  77. 77.
    F.B. Myers and L.P. Lee, Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8, 2015–2031 (2008)CrossRefGoogle Scholar
  78. 78.
    A.W. Martinez, S.T. Phillips, M.J. Butte, G.M. Whitesides, Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46, 1318–1320 (2007)CrossRefGoogle Scholar
  79. 79.
    A.W. Martinez, S.T. Phillips, G.M. Whitesides, Three-dimensional microfluidic devices fabricated in layered paper and tape, Proc. Natl. Acad. Sci. 105, 19606–19611 (2008).ADSCrossRefGoogle Scholar
  80. 80.
    G.J. Kost, Principles and Practice of Point-of-Care Testing: (LWW, Philadelphia, 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Curtis D. Chin
    • 1
  • Sau Yin Chin
    • 1
  • Tassaneewan Laksanasopin
    • 1
  • Samuel K. Sia
    • 1
  1. 1.Department of Biomedical EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations