Integrating Temporal Usage Pattern into Personalized Tag Prediction

  • Lei Zhang
  • Jian Tang
  • Ming Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7235)


The emergence of social tagging systems enables users to organize and share their interested resources. In order to ease the human-computer interaction with such systems, extensive researches have been done on how to recommend personalized tags for rescources. These researches mainly consider user profile, resource content, or the graph structure of users, resources and tags. Users’ preferences towards different tags are usually regarded as invariable against time, neglecting the switch of users’ short-term interests. In this paper, we examine the temporal factor in users’ tagging behaviors by investigating the occurrence patterns of tags and then incorporate this into a novel method for ranking tags. To assess a tag for a user-resource pair, we first consider the user’s general interest in it, then we calculate its recurrence probability based on the temporal usage pattern, and at last we consider its tag relevance to the content of the post. Experiments conducted on real datasets from Bibsonomy and Delicious demonstrate that our method outperforms other temporal models and state-of-the-art tag prediction methods.


Real Time Interval Social Bookmark Recurrence Probability Resource Content Recurrence Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing web search using social annotations. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 501–510. ACM, New York (2007)CrossRefGoogle Scholar
  2. 2.
    Cai, Y., Li, Q.: Personalized search by tag-based user profile and resource profile in collaborative tagging systems. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM 2010, pp. 969–978. ACM, New York (2010)CrossRefGoogle Scholar
  3. 3.
    Heymann, P., Koutrika, G., Garcia-Molina, H.: Can social bookmarking improve web search? In: Proceedings of the International Conference on Web Search and Web Data Mining, WSDM 2008, pp. 195–206. ACM, New York (2008)CrossRefGoogle Scholar
  4. 4.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information Retrieval in Folksonomies: Search and Ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag Recommendations in Folksonomies. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 506–514. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Lipczak, M., Hu, Y., Kollet, Y., Milios, E.: Tag sources for recommendation in collaborative tagging systems. In: Eisterlehner, F., Hotho, A., Jäschke, R. (eds.) ECML PKDD Discovery Challenge 2009 (DC 2009)., vol. 497, pp. 157–172 (September 2009)Google Scholar
  7. 7.
    Noll, M.G., Meinel, C.: Web Search Personalization Via Social Bookmarking and Tagging. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 367–380. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Rendle, S., Marinho, L.B., Nanopoulos, A., Schmidt-Thieme, L.: Learning optimal ranking with tensor factorization for tag recommendation. In: The 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2009), pp. 727–736. ACM, New York (2009)CrossRefGoogle Scholar
  9. 9.
    Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for personalized tag recommendation. In: Davison, B.D., Suel, T., Craswell, N., Liu, B. (eds.) WSDM, pp. 81–90. ACM (2010)Google Scholar
  10. 10.
    Xu, S., Bao, S., Fei, B., Su, Z., Yu, Y.: Exploring folksonomy for personalized search. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2008, pp. 155–162. ACM, New York (2008)CrossRefGoogle Scholar
  11. 11.
    Yin, D., Hong, L., Davison, B.D.: Exploiting session-like behaviors in tag prediction. In: Proceedings of the 20th International Conference Companion on World Wide Web, WWW 2011, pp. 167–168. ACM, New York (2011)CrossRefGoogle Scholar
  12. 12.
    Yin, D., Hong, L., Xue, Z., Davison, B.D.: Temporal dynamics of user interests in tagging systems. In: Burgard, W., Roth, D. (eds.) AAAI. AAAI Press (2011)Google Scholar
  13. 13.
    Yin, D., Xue, Z., Hong, L., Davison, B.D.: A probabilistic model for personalized tag prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2010, pp. 959–968. ACM, New York (2010)CrossRefGoogle Scholar
  14. 14.
    Zhang, D., Mao, R., Li, W.: The recurrence dynamics of social tagging. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009, pp. 1205–1206. ACM, New York (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lei Zhang
    • 1
  • Jian Tang
    • 1
  • Ming Zhang
    • 1
  1. 1.School of Electronics Engineering and Computer SciencePeking UniversityBeijingChina

Personalised recommendations