A Holistic Semantic Similarity Measure for Viewports in Interactive Maps

  • Andrea Ballatore
  • David C. Wilson
  • Michela Bertolotto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7236)


In recent years, geographic information has entered the mainstream, deeply altering the pre-existing patterns of its production, distribution, and consumption. Through web mapping, millions of online users utilise spatial data in interactive digital maps. The typical unit of visualisation of geo-data is a viewport, defined as a bi-dimensional image of a map, fixed at a given scale, in a rectangular frame. In a viewport, the user performs analytical tasks, observing individual map features, or drawing high-level judgements about the objects in the viewport as a whole. Current geographic information retrieval (GIR) systems aim at facilitating analytical tasks, and little emphasis is put on the retrieval and indexing of visualised units, i.e. viewports. In this paper we outline a holistic, viewport-based GIR system, offering an alternative approach to feature-based GIR. Such a system indexes viewports, rather than individual map features, extracting descriptors of their high-level, overall semantics in a vector space model. This approach allows for efficient comparison, classification, clustering, and indexing of viewports. A case study describes in detail how our GIR system models viewports representing geographical locations in Ireland. The results indicate advantages and limitations of the viewport-based approach, which allows for a novel exploration of geographic data, using holistic semantics.


Geographic Information Retrieval Viewport Holistic semantics Geo-semantics OpenStreetMap Vector space model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antrop, M., Van Eetvelde, V.: Holistic aspects of suburban landscapes: visual image interpretation and landscape metrics. Landscape and Urban Planning 50(1-3), 43–58 (2000)CrossRefGoogle Scholar
  2. 2.
    Ballatore, A., Bertolotto, M.: Semantically Enriching VGI in Support of Implicit Feedback Analysis. In: Kim, K.-S. (ed.) W2GIS 2011. LNCS, vol. 6574, pp. 78–93. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Berry, M.W., Drmac, Z., Jessup, E.R.: Matrices, vector spaces, and information retrieval. SIAM Review, 335–362 (1999)Google Scholar
  4. 4.
    Gey, F., Larson, R., Sanderson, M., Joho, H., Clough, P., Petras, V.: GeoCLEF: The CLEF 2005 Cross-Language Geographic Information Retrieval Track Overview. In: Peters, C., Gey, F.C., Gonzalo, J., Müller, H., Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M., Giampiccolo, D. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 908–919. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Goodchild, M.F.: Citizens as Sensors: the world of volunteered geography. GeoJournal 69(4), 211–221 (2007)CrossRefGoogle Scholar
  6. 6.
    Haklay, M., Singleton, A., Parker, C.: Web Mapping 2.0: The Neogeography of the GeoWeb. Geography Compass 2(6), 2011–2039 (2008)CrossRefGoogle Scholar
  7. 7.
    Haklay, M., Weber, P.: OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Computing 7(4), 12–18 (2008)CrossRefGoogle Scholar
  8. 8.
    Janowicz, K., Keßler, C., Panov, I., Wilkes, M., Espeter, M., Schwarz, M.: A study on the cognitive plausibility of SIM-DL similarity rankings for geographic feature types. In: Fabrikant, S., Wachowicz, M. (eds.) The European Information Society, pp. 115–134. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Jing, L., Ng, M.K., Huang, J.Z.: Knowledge-based vector space model for text clustering. Knowledge and Information Systems, 1–21 (2010)Google Scholar
  10. 10.
    Jones, C., Alani, H., Tudhope, D.: Geographical Information Retrieval with Ontologies of Place. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 322–335. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Kuhn, W.: Geospatial Semantics: Why, of What, and How? In: Spaccapietra, S., Zimányi, E. (eds.) Journal on Data Semantics III. LNCS, vol. 3534, pp. 1–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Leveling, J.: Challenges for Indexing in GIR. SIGSPATIAL Special 3(2), 29–32 (2011)CrossRefGoogle Scholar
  13. 13.
    Li, H., Shi, R., Chen, W., Shen, I.F.: Image tangent space for image retrieval. Pattern Recognition 2, 1126–1130 (2006)Google Scholar
  14. 14.
    Liu, W., Gu, H., Peng, C., Cheng, D.: Ontology-based retrieval of geographic information. In: 2010 18th International Conference on Geoinformatics, pp. 1–6 (June 2010)Google Scholar
  15. 15.
    Lutz, M., Klien, E.: Ontology-based retrieval of geographic information. International Journal of Geographical Information Science 20(3), 233–260 (2006)CrossRefGoogle Scholar
  16. 16.
    Manovich, L.: The Language of New Media. MIT Press, Cambridge (2001)Google Scholar
  17. 17.
    Meadow, C.T., Boyce, B.R., Kraft, D.H.: Text information retrieval systems. Academic Press (2007)Google Scholar
  18. 18.
    Naveh, Z.: What is holistic landscape ecology? A conceptual introduction. Landscape and Urban Planning 50(1-3), 7–26 (2000)CrossRefGoogle Scholar
  19. 19.
    Nisbett, R.E., Miyamoto, Y.: The influence of culture: holistic versus analytic perception. Trends in Cognitive Sciences 9(10), 467–473 (2005)CrossRefGoogle Scholar
  20. 20.
    Nisbett, R.E., Peng, K., Choi, I., Norenzayan, A.: Culture and systems of thought: Holistic versus analytic cognition. Psychological Review 108(2), 291 (2001)CrossRefGoogle Scholar
  21. 21.
    Nivala, A.M., Brewster, S., Sarjakoski, L.T.: Usability Evaluation of Web Mapping Sites. The Cartographic Journal 45(2), 129–138 (2008)CrossRefGoogle Scholar
  22. 22.
    Purves, R., Jones, C.: Geographic information retrieval. SIGSPATIAL Special 3(2), 2–4 (2011)CrossRefGoogle Scholar
  23. 23.
    Rodríguez, M.A., Egenhofer, M.: Comparing Geospatial Entity Classes: An Asymmetric and Context-Dependent Similarity Measure. International Journal of Geographical Information Science 18(3), 229–256 (2004)CrossRefGoogle Scholar
  24. 24.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communications of the ACM 18(11), 613–620 (1975)CrossRefMATHGoogle Scholar
  25. 25.
    Schwarzer, G., Huber, S., Dümmler, T.: Gaze behavior in analytical and holistic face processing. Memory & Cognition 33(2), 344–354 (2005)CrossRefGoogle Scholar
  26. 26.
    Schwering, A.: Approaches to Semantic Similarity Measurement for Geo-Spatial Data: A Survey. Transactions in GIS 12(1), 5–29 (2008)CrossRefGoogle Scholar
  27. 27.
    Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)MathSciNetMATHGoogle Scholar
  28. 28.
    Sizov, S.: GeoFolk: latent spatial semantics in web 2.0 social media. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 281–290. ACM (2010)Google Scholar
  29. 29.
    Smith, J.D., Shapiro, J.H.: The occurrence of holistic categorization. Journal of Memory and Language 28(4), 386–399 (1989)CrossRefGoogle Scholar
  30. 30.
    Tan, H., Yu, P., Li, X., Yang, Y.: Digital image similarity metrics and their performances. In: Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), pp. 3922–3925. IEEE (2011)Google Scholar
  31. 31.
    Turner, A.: Introduction to Neogeography. O’Reilly Media, Inc., Sebastopol (2006)Google Scholar
  32. 32.
    Turney, P.D., Pantel, P., et al.: From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research 37(1), 141–188 (2010)MathSciNetMATHGoogle Scholar
  33. 33.
    Ward, T.B., Scott, J.: Analytic and holistic modes of learning family-resemblance concepts. Memory & Cognition 15(1), 42–54 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrea Ballatore
    • 1
  • David C. Wilson
    • 2
  • Michela Bertolotto
    • 1
  1. 1.School of Computer Science and InformaticsUniversity College DublinDublinIreland
  2. 2.Department of Software and Information SystemsUniversity of North CarolinaCharlotteUSA

Personalised recommendations