Packing Euler graphs with traces

Conference paper
Part of the Operations Research Proceedings book series (ORP)

Abstract

For a graph G = (V,E) and a vertex v ∈ V, let T(v) be a local trace at v, i.e. T(v) is an Eulerian subgraph of G such that every walkW(v), with start vertex v can be extended to an Eulerian tour in T(v). In general, local traces are not unique. We prove that if G is Eulerian every maximum edge-disjoint cycle packing Z* of G induces maximum local traces T(v) at v for every v ∈ V. In the opposite, if the total size $$ \sum $$V∈E|(T(v)|| is minimal then the set of related edge-disjoint cycles in G must be maximum.

Keywords

Total Size Arbitrary Graph Disjoint Cycle Maximum Packing Eulerian Tour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baebler, F.: Über eine spezielle Klasse Euler’scher Graphen, Comment. Math. Helv., vol 27(1), 81-100 (1953)CrossRefGoogle Scholar
  2. 2.
    Bafna, V., Pevzner, P.A. : Genome Rearrangement and sorting by reversals, SIAM Journal on Computing Vol 25 (2) 272-289 (1996)CrossRefGoogle Scholar
  3. 3.
    Caprara, A.: Sorting Permutations by Reversals and Eulerian Cycle Decompositions, SIAM Journal on Discrete Mathematics 12 (1) 91 - 110 (1999)CrossRefGoogle Scholar
  4. 4.
    Caprara, A., Panconesi, A., Rizzi, R.: Packing Cycles in Undirected Graphs, Journal of Algorithms 48 (1) 239 - 256 (2003)CrossRefGoogle Scholar
  5. 5.
    Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rearrangement, MIT Press, Cambridge, Ma. (2009)Google Scholar
  6. 6.
    Harant, J., Rautenbach, D., Recht, P., Schiermeyer, I., Sprengel, E.M.: Packing disjoint cycles over vertex cuts, Discrete Mathematics 310 1974-1978( 2010)CrossRefGoogle Scholar
  7. 7.
    Kececioglu, J., Sankoff, D.: Exact and Approximation Algorithms for Sorting by Reversals with Application to genome rearrangement Algorithmica 13 180 - 210 (1997)Google Scholar
  8. 8.
    Krivelevich, M., Nutov, Z., Salvatpour, M.R., Yuster, J., Yuster, R.: Approximation algorithms and hardness results for cycle packing problems, ACM Trans. Algorithm 3 Article No. 48 (2007)Google Scholar
  9. 9.
    Ore, O.: A problem regarding the tracing of graphs, Elem. Math. 6, 49-53 (1951)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Operations Research undWirtschaftsinformatik, TU DortmundDortmundGermany

Personalised recommendations