Service Analytics: Leveraging Data Across Enterprise Boundaries for Competitive Advantage

  • Hansjörg Fromm
  • François Habryn
  • Gerhard Satzger


The modern view on services focuses on the co-creation of value between providers and customers—leveraging knowledge, skills, and resources of both partners from an overall system point of view. This perspective goes beyond the typical customer integration in a traditional services context, thereby leading professional services firms to quickly adopt new methods to exploit this potential. This includes capturing, processing, and analyzing data produced by multiple actors within a services system with the objective to support strategy implementations and drive complex decisions—an area which we call “service analytics” in this paper. We describe the nature of service analytics and outline its distinctiveness with regard to business analytics. We subsequently provide a typology of its approaches based on the different types of data available in services systems. We finally illustrate the potential of service analytics by means of two application scenarios: customer intimacy analytics focusing on the service encounter as well as demand and inventory analytics which are concerned with customer usage.


  1. Chaudhuri S, Dayal U (1997) An overview of data warehousing and OLAP technology. ACM SIGMOD Rec 26(1):65–74CrossRefGoogle Scholar
  2. Davenport TH (2006) Competing on analytics. Harv Bus Rev 84(1):98–107MathSciNetGoogle Scholar
  3. Davenport TH, Harris JG (2007) Competing on analytics: the new science of winning. Harvard Business School Press, Boston, MAGoogle Scholar
  4. Engelhardt WH, Kleinaltenkamp M, Reckenfelderbäumer M (1993) Leistungsbündel als Absatzobjekte – Ein Ansatz zur Überwindung der Dichotomie von Sach- und Dienstleistungsobjekten. Zeitschrift für betriebswirtschaftliche Forschung 45(5):395–426Google Scholar
  5. Habryn F, Blau B, Satzger G, Kölmel B (2010) Towards a model for measuring customer intimacy in B2B services. In: Morin JH, Ralyté J, Snene M (eds) Exploring services science. Springer, BerlinGoogle Scholar
  6. Han J, Chen-Chuan Chang K (2002) Data mining for web intelligence. Computer 35(11):54–60Google Scholar
  7. IBM Institute for Business Value (2010) Capitalizing on complexity: insight from the global CEO study. Available at: Scholar
  8. INFORMS (2012) Analytics. INFORMS Online, p.1. Available at: Accessed May 10, 2012
  9. Kobielus J (2010) The Forrester Wave™: predictive analytics and data mining solutions. Forrester, Cambridge, MAGoogle Scholar
  10. Kohavi R, Rothleder NJ, Simoudis E (2002) Emerging trends in business analytics. Commun ACM 45(8):45–48CrossRefGoogle Scholar
  11. Korevaar P, Schimpel U, Boedi R (2007) Inventory budget optimization: meeting system-wide service levels in practice. IBM J Res Dev 51(3):447–464CrossRefGoogle Scholar
  12. Lavalle S et al (2011) Big data, analytics, and the path from insights to value big data, analytics and the path from insights to value. MIT Slogan Manage Rev 52(2):20–32Google Scholar
  13. Liang T (2009) Information technology for customer intimacy: a niche for research in the internet age. Pac Asia J Assoc Inform Syst 1(3):1–4Google Scholar
  14. McKinsey (2011) Big data: the next frontier for innovation, competition, and productivity. McKinsey & CompanyGoogle Scholar
  15. Maglio PP, Srinivasan S, Kreulen JT, Sporer J (2006) Service systems, service scientists, SSME, and innovation. Commun ACM 49(7):81–85CrossRefGoogle Scholar
  16. Mojsilović A, Connors D (2010) Workforce analytics for the services economy. In: Maglio PP, Kieliszewski CA, Spohrer JC (eds) Handbook of service science. Springer, Boston, MAGoogle Scholar
  17. Neely A (2009) Exploring the financial consequences of the servitization of manufacturing. Oper Manage Res 1(2):103–118CrossRefGoogle Scholar
  18. Payne AF, Storbacka K, Frow P (2007) Managing the co-creation of value. J Acad Mark Sci 36(1):83–96CrossRefGoogle Scholar
  19. Satzger G, Ganz W (2010) Auf dem Weg zu einer Service Science – Perspektiven, Forschungsthemen und Handlungsempfehlungen aus der Sicht einer interdisziplinären Arbeitsgruppe. Arbeitsgruppe Evaluation Service Science der Taskforce Dienstleistungen – Forschungsunion Wirtschaft-WissenschaftGoogle Scholar
  20. Spohrer J, Maglio PP, Bailey J, Gruhl D (2007) Steps toward a science of service systems. Computer 40(1):71–77CrossRefGoogle Scholar
  21. Srivastava J, Cooley R, Deshpande M, Tan PN (2000) Web usage mining. ACM SIGKDD Explor Newslett 1(2):12CrossRefGoogle Scholar
  22. Treacy M, Wiersema FD (1993) Customer intimacy and other value disciplines. Harv Bus Rev 84–93Google Scholar
  23. Vargo SL, Lusch RF (2004) Evolving to a new dominant logic for marketing. J Mark 68(1):1–17CrossRefGoogle Scholar
  24. Vargo SL, Lusch RF (2008) From goods to service(s): divergences and convergences of logics. Ind Mark Manage 37(3):254–259CrossRefGoogle Scholar
  25. Wagner SM, Lindemann E (2008) A case study-based analysis of spare parts management in the engineering industry. Prod Plan Control 19(4):397–407CrossRefGoogle Scholar
  26. White C (2011) Using big data for smarter decision making. BI ResearchGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hansjörg Fromm
    • 1
  • François Habryn
    • 1
  • Gerhard Satzger
    • 2
  1. 1.KSRI/KITKarlsruheGermany
  2. 2.IBMKarlsruheGermany

Personalised recommendations