Testing Diversity-Enhancing Migration Policies for Hybrid On-Line Evolution of Robot Controllers

  • Pablo García-Sánchez
  • A. E. Eiben
  • Evert Haasdijk
  • Berend Weel
  • Juan-Julián Merelo-Guervós
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7248)

Abstract

We investigate on-line on-board evolution of robot controllers based on the so-called hybrid approach (island-based). Inherently to this approach each robot hosts a population (island) of evolving controllers and exchanges controllers with other robots at certain times. We compare different exchange (migration) policies in order to optimize this evolutionary system and compare the best hybrid setup with the encapsulated and distributed alternatives. We conclude that adding a difference-based migrant selection scheme increases the performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araujo, L., Merelo, J.J.: Diversity through multiculturality: Assessing migrant choice policies in an island model. IEEE Trans. Evolutionary Computation 15(4), 456–469 (2011)CrossRefGoogle Scholar
  2. 2.
    Cantú-Paz, E.: Migration policies, selection pressure, and parallel evolutionary algorithms. Journal of Heuristics 7(4), 311–334 (2001)MATHCrossRefGoogle Scholar
  3. 3.
    Eiben, A.E., Haasdijk, E., Bredeche, N.: Embodied, on-line, on-board evolution for autonomous robotics. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution, vol. 10, pp. 361–382. Springer, Heidelberg (2010)Google Scholar
  4. 4.
    Haasdijk, E., Eiben, A.E., Karafotias, G.: On-line evolution of robot controllers by an encapsulated evolution strategy. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation. IEEE Computational Intelligence Society, IEEE Press, Barcelona, Spain (2010)Google Scholar
  5. 5.
    Huijsman, R.-J., Haasdijk, E., Eiben, A.E.: An on-line, on-board distributed algorithm for evolutionary robotics. In: Proceedings of the Biennial International Conference on Artificial Evolution, EA 2011 (2011) (to appear)Google Scholar
  6. 6.
    Laredo, J.L.J., Eiben, A.E., van Steen, M., Merelo, J.J.: Evag: a scalable peer-to-peer evolutionary algorithm. Genetic Programming and Evolvable Machines 11(2), 227–246 (2010)CrossRefGoogle Scholar
  7. 7.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT (2000)Google Scholar
  8. 8.
    Nordin, P., Banzhaf, W.: An on-line method to evolve behavior and to control a miniature robot in real time with genetic programming. Adaptive Behavior 5(2), 107–140 (1997)CrossRefGoogle Scholar
  9. 9.
    Smit, S.K., Eiben, A.E.: Comparing parameter tuning methods for evolutionary algorithms. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 399–406. IEEE (2009)Google Scholar
  10. 10.
    Smit, S.K., Eiben, A.E.: Multi-problem parameter tuning. In: Proceedings of the Biennial International Conference on Artificial Evolution, EA 2011 (2011) (to appear)Google Scholar
  11. 11.
    Watson, R.A., Ficici, S.G., Pollack, J.B.: Embodied evolution: Distributing an evolutionary algorithm in a population of robots. Robotics and Autonomous Systems 39(1), 1–18 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pablo García-Sánchez
    • 1
  • A. E. Eiben
    • 2
  • Evert Haasdijk
    • 2
  • Berend Weel
    • 2
  • Juan-Julián Merelo-Guervós
    • 1
  1. 1.Dept. of Computer Architecture and TechnologyUniversity of GranadaSpain
  2. 2.Dept. of Computer ScienceVrije Universiteit AmsterdamThe Netherlands

Personalised recommendations