A Novel Multiobjective Formulation of the Robust Software Project Scheduling Problem

  • Francisco Chicano
  • Alejandro Cervantes
  • Francisco Luna
  • Gustavo Recio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7248)


The Software Project Scheduling (SPS) problem refers to the distribution of tasks during a software project lifetime. Software development involves managing human resources and a total budget in an optimal way for a successful project which, in turn, demonstrates the importance of the SPS problem for software companies. This paper proposes a novel formulation for the SPS problem which takes into account actual issues such as the productivity of the employees at performing different tasks. The formulation also provides project managers with robust solutions arising from an analysis of the inaccuracies in task-cost estimations. An experimental study is presented which compares the resulting project plans and analyses the performance of four different well-know evolutionary algorithms over two sets of realistic instances representing the problem. Statistical parameters are also provided in order to help the project manager in the decision process.


Software Project Scheduling Robustness Multi-objective Optimisation Evolutionary Algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang, C.K., Yi Jiang, H., Di, Y., Zhu, D., Ge, Y.: Time-line based model for software project scheduling with genetic algorithms. Information and Software Technology 50(11), 1142–1154 (2008)CrossRefGoogle Scholar
  2. 2.
    Chicano, F., Luna, F., Nebro, A.J., Alba, E.: Using multi-objective metaheuristics to solve the software project scheduling problem. In: Proceedings of GECCO, pp. 1915–1922 (2011)Google Scholar
  3. 3.
    Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)zbMATHGoogle Scholar
  4. 4.
    Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley & Sons (2001)Google Scholar
  5. 5.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on Ev. Comp. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  6. 6.
    Garey, M.R., Johson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W.H. Freeman and Company (1979)Google Scholar
  7. 7.
    Gutjahr, W., Katzensteiner, S., Reiter, P., Stummer, C., Denk, M.: Competence-driven project portfolio selection, scheduling and staff assignment. Central European Journal of Operations Research 16(3), 281–306 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Knowles, J.: A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers. In: ISDA, pp. 552–557 (2005)Google Scholar
  9. 9.
    Knowles, J., Corne, D.: Approximating the nondominated front using the pareto archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000)CrossRefGoogle Scholar
  10. 10.
    Moløkken, K., Jørgensen, M.: A review of surveys on software effort estimation. In: 2003 Int. Symp. on Empirical Software Engineering, pp. 223–231 (2003)Google Scholar
  11. 11.
    Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: A cellular genetic algorithm for multiobjective optimization. In: NICSO 2006, pp. 25–36 (2006)Google Scholar
  12. 12.
    Palpant, M., Artigues, C., Michelon, P.: LSSPER: Solving the resource-constrained project scheduling problem with large neighbourhood search. Annals of Operations Research 131, 237–257 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 4th edn. Chapman & Hall/CRC (2007)Google Scholar
  14. 14.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithms. In: EUROGEN 2001, pp. 95–100 (2002)Google Scholar
  15. 15.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE TEC 3(4), 257–271 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Francisco Chicano
    • 1
  • Alejandro Cervantes
    • 2
  • Francisco Luna
    • 1
  • Gustavo Recio
    • 2
  1. 1.University of MálagaMálagaSpain
  2. 2.University Carlos III of MadridSpain

Personalised recommendations