Distributed Simulated Annealing with MapReduce

  • Atanas Radenski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7248)

Abstract

Simulated annealing’s high computational intensity has stimulated researchers to experiment with various parallel and distributed simulated annealing algorithms for shared memory, message-passing, and hybrid-parallel platforms. MapReduce is an emerging distributed computing framework for large-scale data processing on clusters of commodity servers; to our knowledge, MapReduce has not been used for simulated annealing yet. In this paper, we investigate the applicability of MapReduce to distributed simulated annealing in general, and to the TSP in particular. We (i) design six algorithmic patterns of distributed simulated annealing with MapReduce, (ii) instantiate the patterns into MR implementations to solve a sample TSP problem, and (iii) evaluate the solution quality and the speedup of the implementations on a cloud computing platform, Amazon’s Elastic MapReduce. Some of our patterns integrate simulated annealing with genetic algorithms. The paper can be beneficial for those interested in the potential of MapReduce in computationally intensive nature-inspired methods in general and simulated annealing in particular.

Keywords

simulated annealing MapReduce traveling salesperson (TSP) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer, Boston (2000)MATHCrossRefGoogle Scholar
  2. 2.
    Choong, A., Beidas, R., Zhu, J.: Parallelizing Simulated Annealing-Based Placement using GPGPU. In: Field Programmable Logic and Applications, pp. 31–34. IEEE, New York (2010)Google Scholar
  3. 3.
    Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. CACM 51(1), 107–113 (2008)Google Scholar
  4. 4.
    Debudaj-Grabysz, A., Rabenseifner, R.: Nesting OpenMP in MPI to Implement a Hybrid Communication Method of Parallel Simulated Annealing on a Cluster of SMP Nodes. In: Di Martino, B., Kranzlmüller, D., Dongarra, J. (eds.) EuroPVM/MPI 2005. LNCS, vol. 3666, pp. 18–27. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Elhaddad, Y., Sallabi, O.: A New Hybrid Genetic and Simulated Annealing Algorithm to Solve the Traveling Salesman Problem. In: World Congress on Engineering (WCE 2010), vol. 1, pp. 11–14. International Association of Engineers, Taipei (2010)Google Scholar
  6. 6.
    Hansen, P.-B.: Studies in Computational Science. Prentice Hall, Englewood Cliffs (1995)Google Scholar
  7. 7.
    Huang, D.-W., Lin, J.: Scaling Populations of a Genetic Algorithm for Job Shop Scheduling Problems Using MapReduce. In: 2010 IEEE 2nd International Conference on Cloud Computing Technology and Science, pp. 78–85. IEEE, New York (2010)Google Scholar
  8. 8.
    Lin, J., Dyer, C.: Data-Intensive Text Processing with MapReduce. Morgan and Claypool, San Francisco Bay Area (2010)Google Scholar
  9. 9.
    Ma, J., Li, K., Zhang, L.: The Adaptive Parallel Simulated Annealing Algorithm Based on TBB. In: 2nd International Conference on Advanced Computer Control, pp. 611–615. IEEE, New York (2010)Google Scholar
  10. 10.
    Moscato, P., Fontanari, J.: Stochastic versus Deterministic Update in Simulated Annealing. Physics Letters A 146(4), 204–208 (1990)CrossRefGoogle Scholar
  11. 11.
    Ohlídal, M., Schwarz, J.: Hybrid Parallel Simulated Annealing Using Genetic Operations. In: 10th International Conference on Soft Computing, Mendel 2004, pp. 89–94. University of Technology, Brno (2004)Google Scholar
  12. 12.
    Ram, J.D., Sreenevas, T.T., Subramaniam, K.G.: Parallel Simulated Annealing Algorithms. J. Par. Distr. Computing 37, 207–212 (1996)CrossRefGoogle Scholar
  13. 13.
    Sengoku, H., Yoshihara, I.: A Fast TSP Solver Using GA on Java. In: 3rd Int. Symp. Artif. Life and Robot., pp. 283–288. Springer, Japan (1998)Google Scholar
  14. 14.
    Verma, A., Llorà, X., Goldberg, D.E., Campbell, R.H.: Scaling Genetic Algorithms Using MapReduce. In: 9th International Conference on Intelligent Systems Design and Applications, pp. 13–18. IEEE, New York (2009)CrossRefGoogle Scholar
  15. 15.
    White, T.: Hadoop: The Definitive Guide, 2nd edn. O’Reilly Media, Sebastopol (2009)Google Scholar
  16. 16.
    Yao, X.: Optimization by Genetic Annealing. In: 2nd Australian Conf. Neural Networks, pp. 94–97. Sidney University, Sidney (1991)Google Scholar
  17. 17.
    Zhou, C.: Fast Parallelization of Differential Evolution Algorithm Using MapReduce. In: 12th Annual Conference on Genetic and Evolutionary Computation, pp. 1113–1114. ACM, New York (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Atanas Radenski
    • 1
  1. 1.Chapman UniversityOrangeUSA

Personalised recommendations