Pool-Based Distributed Evolutionary Algorithms Using an Object Database

  • Juan-Julián Merelo-Guervós
  • Antonio Mora
  • J. Albert Cruz
  • Anna I. Esparcia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7248)


This work presents the mapping of an evolutionary algorithm to the CouchDB object store. This mapping decouples the population from the evolutionary algorithm, and allows a distributed and asynchronous operation of clients written in different languages. In this paper we present initial tests which prove that the novel algorithm design still performs as an evolutionary algorithm and try to find out what are the main issues concerning it, what kind of speedups should we expect, and how all this affects the fundamentals of the evolutionary algorithm.


Evolutionary Algorithm Packet Size Database Management System Object Database Parallel Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atienza, J., Castillo, P.A., García, M., González, J., Merelo, J.: Jenetic: a distributed, fine-grained, asynchronous evolutionary algorithm using Jini. In: Wang, P.P. (ed.) Proc. JCIS 2000 (Joint Conference on Information Sciences), vol. I, pp. 1087–1089 (2000); ISBN: 0-9643456-9-2Google Scholar
  2. 2.
    Bánhelyi, B., Biazzini, M., Montresor, A., Jelasity, M.: Peer-to-Peer Optimization in Large Unreliable Networks with Branch-and-Bound and Particle Swarms. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 87–92. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bartholomew, D.: SQL vs. NoSQL. Linux Journal 195, 4 (2010)Google Scholar
  4. 4.
    Bollini, A., Piastra, M.: Distributed and Persistent Evolutionary Algorithms: A Design Pattern. In: Langdon, W.B., Fogarty, T.C., Nordin, P., Poli, R. (eds.) EuroGP 1999. LNCS, vol. 1598, pp. 173–183. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Castillo, P.A., García-Arenas, M., Mora, A.M., Jiménez-Laredo, J.L., Romero, G., Rivas, V.M., Merelo-Guervós, J.J.: Distributed Evolutionary Computation using REST. CoRR abs/1105.4971 (2011)Google Scholar
  6. 6.
    Crockford, D.: JavaScript Object Notation (JSON) (July 2006),
  7. 7.
    Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. Communications of the ACM 51(1), 107 (2008)CrossRefGoogle Scholar
  8. 8.
    Goldberg, D.E.: Zen and the art of genetic algorithms. In: Schaffer, J.D. (ed.) ICGA 1995, June 4-7, pp. 80–85. George Mason University, Morgan Kaufmann, San Mateo, California (1989)Google Scholar
  9. 9.
    Llorà, X., Ács, B., Auvil, L., Capitanu, B., Welge, M., Goldberg, D.: Meandre: Semantic-driven data-intensive flows in the clouds. Tech. Rep. 2008103, Illinois Genetic Algorithms Laboratory (2008)Google Scholar
  10. 10.
    Gorges-Schleuter, M.: ASPARAGOS: An asynchronous parallel genetic optimization strategy. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann Publishers (1989)Google Scholar
  11. 11.
    Merelo, J.J., Castillo, P., Laredo, J., Mora, A., Prieto, A.: Asynchronous distributed genetic algorithms with Javascript and JSON. In: Proceedings of WCCI 2008, pp. 1372–1379. IEEE Press (2008),
  12. 12.
    Merelo, J.J.: Fluid evolutionary algorithms. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)Google Scholar
  13. 13.
    Nowostawski, M., Poli, R.: Parallel genetic algorithm taxonomy. In: Third International Conference on Knowledge-Based Intelligent Information Engineering Systems, pp. 88–92. IEEE (1999)Google Scholar
  14. 14.
    Roy, G., Lee, H., Welch, J., Zhao, Y., Pandey, V., Thurston, D.: A distributed pool architecture for genetic algorithms. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 1177–1184 (May 2009)Google Scholar
  15. 15.
    Talukdar, S., Murthy, S., Akkiraju, R.: Asynchronous teams. International Series in Operations Research and Management Science, pp. 537–556 (2003)Google Scholar
  16. 16.
    Tiwari, S.: Professional NoSQL. John Wiley & Sons, Inc. (2011)Google Scholar
  17. 17.
    Yang, H., Dasdan, A., Hsiao, R., Parker, D.: Map-reduce-merge: simplified relational data processing on large clusters. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 1029–1040. ACM (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Juan-Julián Merelo-Guervós
    • 1
  • Antonio Mora
    • 1
  • J. Albert Cruz
    • 2
  • Anna I. Esparcia
    • 3
  1. 1.Departamento de Arquitectura y Tecnología de ComputadoresUniversidad de GranadaSpain
  2. 2.Universidad de Ciencias InformáticasCuba
  3. 3.S2 GrupoValenciaSpain

Personalised recommendations