A Comparative Study of Multi-objective Evolutionary Algorithms to Optimize the Selection of Investment Portfolios with Cardinality Constraints
Abstract
We consider the problem of selecting investment components according to two partially opposed measures: the portfolio performance and its risk. We approach this within Markowitz’s model, considering the case of mutual funds market in Europe until July 2010. Comparisons were made on three multi-objective evolutionary algorithms, namely NSGA-II, SPEA2 and IBEA. Two well-known performance measures are considered for this purpose: hypervolume and R 2 indicator. The comparative analysis also includes an assessment of the financial efficiency of the investment portfolio selected according to Sharpe’s index, which is a measure of performance/risk. The experimental results hint at the superiority of the indicator-based evolutionary algorithm.
Keywords
Genetic Algorithm Pareto Front Mutual Fund Portfolio Optimization Investment PortfolioPreview
Unable to display preview. Download preview PDF.
References
- 1.Anagnostopoulos, K.P., Mamanis, G.: A portfolio optimization model with three objectives and discrete variables. Comput. Oper. Res. 37, 1285–1297 (2010)MathSciNetMATHCrossRefGoogle Scholar
- 2.Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – A Platform and Programming Language Independent Interface for Search Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 3.Chang, T.-J., Meade, N., Beasley, J.E., Sharaiha, Y.M.: Heuristics for cardinality constrained portfolio optimisation. Computers and Operations Research 27, 1271–1302 (2000)MATHCrossRefGoogle Scholar
- 4.Corne, D., Knowles, J., Oates, M.: The Pareto Envelope Based Selection Algorithm for Multiobjective Optimization. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN VI 2000. LNCS, vol. 1917, pp. 839–848. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 5.Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN VI 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 6.Diosan, L.: A multi-objective evolutionary approach to the portfolio optimization problem. In: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, CIMCA-IAWTIC 2006, vol. 2, pp. 183–187. IEEE, Washington, DC, USA (2005)Google Scholar
- 7.Doerner, K., Gutjahr, W., Hartl, R., Strauss, C., Stummer, C.: Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research 131, 79–99 (2004)MathSciNetMATHCrossRefGoogle Scholar
- 8.Ehrgott, M., Klamroth, K., Schwehm, C.: An MCDM approach to portfolio optimization. European Journal of Operational Research 155(3), 752–770 (2004)MathSciNetMATHCrossRefGoogle Scholar
- 9.Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference Genetic Algorithms, pp. 416–423. University of Illinois at Urbana-Champaign, Morgan Kauffman Publishers, San Mateo, California (1993)Google Scholar
- 10.Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations to the nondominated set. Technical Report IMM-REP-1998-7, Institute of Mathematical Modelling Technical University of Denmark (1998)Google Scholar
- 11.Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched pareto genetic algorithm for multiobjective optimization. In: First IEEE Conference on Evolutionary Computation, pp. 82–87. IEEE (1994)Google Scholar
- 12.Jensen, M.C.: The performance of mutual funds in the period 1945 - 1964. Journal of Finance 23, 383–417 (1968)CrossRefGoogle Scholar
- 13.Lehmann, E.L., D’Abrera, H.J.M.: Nonparametrics: Statistical Methods Based on Ranks. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
- 14.Markowitz, H.M.: Portfolio selection. Journal of Finance 7, 77–91 (1952)CrossRefGoogle Scholar
- 15.Pérez, M.E., del Olmo, R., Herrera, F.: The formation of efficient portfolios using multiobjective genetic algorithms. Technical Report DECSAI-00-01-26, Dept. CCIA, Universidad de Granada (2000)Google Scholar
- 16.Valenzuela Rendón, M., Uresti Charre, E.: A non-generational genetic algorithm for multiobjective optimization. In: Bäck, T. (ed.) Proceedings of the Seventh International Conference on Genetic Algorithms, pp. 658–665. Michigan State University, Morgan Kaufmann, San Mateo, California (1997)Google Scholar
- 17.David Schaffer, J.: Multiple objective optimization with vector evaluated geneticalgorithms. In: Grefenstette, J.J. (ed.) Proceedings of the First International Conference on Genetic Algorithms and their Applications, pp. 93–100. Lawrence Erlbaum, Hillsdale NJ (1985)Google Scholar
- 18.Sharpe, W.F.: Capital assets prices: A theory of market equilibrium under conditions of risk. Journal of Finance 19, 425–442 (1964)CrossRefGoogle Scholar
- 19.Sharpe, W.F.: Mutual fund performance. Journal of Business 39, 119–138 (1966)CrossRefGoogle Scholar
- 20.Skolpadungket, P., Keshav, D., Napat, H.: Portfolio optimization using multi objective genetic algorithms. In: IEEE Congress on Evolutionary Computation, pp. 516–523 (2007)Google Scholar
- 21.Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2, 221–248 (1994)CrossRefGoogle Scholar
- 22.Yahoo Finance. Mutual funds center (2011)Google Scholar
- 23.Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN VIII 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 24.Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. In: Giannakoglou, K., et al. (eds.) EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece, pp. 95–100 (2002)Google Scholar
- 25.Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)CrossRefGoogle Scholar
- 26.Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)CrossRefGoogle Scholar