A Neuro-evolutionary Approach to Intraday Financial Modeling

  • Antonia Azzini
  • Mauro Dragoni
  • Andrea G. B. Tettamanzi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7248)

Abstract

We investigate the correlations among the intraday prices of the major stocks of the Milan Stock Exchange by means of a neuro-evolutionary modeling method. In particular, the method used to approach such problem is to apply a very powerful natural computing analysis tool, namely evolutionary neural networks, based on the joint evolution of the topology and the connection weights together with a novel similarity-based crossover, to the analysis of a financial intraday time series expressing the stock quote variations of the FTSE MIB components. We show that it is possible to obtain extremely accurate models of the variations of the price of one stock based on the price variations of the other components of the stock list, which may be used for statistical arbitrage.

Keywords

Evolutionary Algorithms Neural Networks Intraday Trading Statistical Arbitrage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azzini, A., Dragoni, M., Tettamanzi, A.: A Novel Similarity-Based Crossover for Artificial Neural Network Evolution. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 344–353. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Azzini, A., Tettamanzi, A.: Evolving neural networks for static single-position automated trading. Journal of Artificial Evolution and Applications 2008 (Article ID 184286), 1–17 (2008)Google Scholar
  3. 3.
    Azzini, A., Tettamanzi, A.: A new genetic approach for neural network design. In: Engineering Evolutionary Intelligent Systems. SCI, vol. 82. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bi, T., Zhang, B., Xu, R.: Dynamics of intraday serial correlation in china’s stock market. Communications in Statistics - Simulation and Computation 40(10), 1637–1650 (2011)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Brabazon, A., O’Neill, M. (eds.): Natural Computing in Computational Finance. SCI, vol. 1. Springer, Heidelberg (2008)MATHGoogle Scholar
  6. 6.
    Brabazon, A., O’Neill, M. (eds.): Natural Computing in Computational Finance. SCI, vol. 2. Springer, Heidelberg (2009)MATHGoogle Scholar
  7. 7.
    Brabazon, A., O’Neill, M., Maringer, D. (eds.): Natural Computing in Computational Finance. SCI, vol. 3. Springer, Heidelberg (2010)MATHGoogle Scholar
  8. 8.
    Cheng, S.H.: Forecasting the change of intraday stock price by using text mining news of stock. In: ICMLC, pp. 2605–2609. IEEE (2010)Google Scholar
  9. 9.
    Chicco, D., Resta, M.: An intraday trading model based on artificial immune systems. In: Apolloni, B., Bassis, S., Esposito, A., Morabito, F. (eds.) WIRN. Frontiers in Artificial Intelligence and Applications, vol. 226, pp. 62–68. IOS Press (2010)Google Scholar
  10. 10.
    Diaz, D., Theodoulidis, B., Sampaio, P.: Analysis of stock market manipulations using knowledge discovery techniques applied to intraday trade prices. Expert Syst. Appl. 38(10), 12757–12771 (2011)CrossRefGoogle Scholar
  11. 11.
    Groth, S., Muntermann, J.: An intraday market risk management approach based on textual analysis. Decision Support Systems 50(4), 680–691 (2011)CrossRefGoogle Scholar
  12. 12.
    Harris, L.: Trading and exchanges: market microstructure for practitioners. Oxford University Press (2003)Google Scholar
  13. 13.
    Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards 49(6) (1952)Google Scholar
  14. 14.
    Mittermayer, M.A.: Forecasting intraday stock price trends with text mining techniques. In: HICSS (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Antonia Azzini
    • 1
  • Mauro Dragoni
    • 2
  • Andrea G. B. Tettamanzi
    • 1
  1. 1.Dipartimento di Tecnologie dell’InformazioneUniversità degli Studi di MilanoCremaItaly
  2. 2.Fondazione Bruno Kessler (FBK-IRST)Povo (Trento)Italy

Personalised recommendations