Meteorological Influences Within the Context of Air Quality in Beijing

  • K. Schäfer
  • Y. Wang
  • S. Norra
  • R. Shen
  • J. Xin
  • H. Ling
  • G. Tang
  • C. Münkel
  • N. Schleicher
  • Y. Yu
  • J. Schnelle-Kreis
  • L. Shao
  • V. Dietze
  • K. Cen
  • R. Zimmermann
  • S. Schrader
  • P. Suppan
Conference paper
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

Daily PM2.5 samples were collected continuously with two high-volume samplers at the ground of CUGB from 06/2010 until 06/2011. The site is very near to the instrumentation for long-term investigation of the inorganic composition of PM2.5 (DWD, KIT/IMG). The daily filter samples are analyzed for carbon fractions, organic compound speciation (HMGU, UR), inorganic (KIT/IMG) and isotopic composition. Gaseous pollutants like NO, NO2 and O3 and compounds which are of interest for secondary aerosol formation like SO2 were measured by a DOAS with three retroreflectors from 04/2009 until 03/2011 in Beijing at LAPC. By path-integrated measurements at different directions information about emission sources (motorway, small street) can be provided. The emitter/receiver unit is in 20 m distance to an air pollution monitoring station. The diurnal development and variation of the mixing layer height (MLH) is determined by a ceilometer. It is shown that the variations of the observed SO2 and NO2 as well as PM2.5 concentrations are influenced by the MLH, apart from the meteorological (e.g. wind), emission (e.g. SO2) and photochemistry dependences. High air pollution is coupled significantly with MLH lower than 1,000 m.

Keywords

Aerosol Layer Backscatter Intensity Differential Optical Absorption Spectroscopy Gradient Minimum Quartz Fibre Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Emeis S, Münkel C, Vogt S, Müller W, Schäfer K (2004) Determination of mixing-layer height. Atmos Environ 38:273–286CrossRefGoogle Scholar
  2. Emeis S, Schäfer K (2006) Remote sensing methods to investigate boundary-layer structures relevant to air pollution in cities. Bound Lay Meteorol 121:377–385CrossRefGoogle Scholar
  3. Emeis S, Jahn C, Münkel C, Münsterer C, Schäfer K (2007) Multiple atmospheric layering and mixing-layer height in the Inn Valley observed by remote sensing. Meteorol Z 16:415–424CrossRefGoogle Scholar
  4. Emeis S, Schäfer K, Münkel C (2008) Surface-based remote sending of the mixing-layer height. Meteorol Z 17:621–630CrossRefGoogle Scholar
  5. Münkel C (2007) Mixing height determination with lidar ceilometers – results from Helsinki Testbed. Meteorol Z 16:451–459CrossRefGoogle Scholar
  6. Norra S, Hundt B, Stüben D, Cen K, Liu C, Dietze V, Schultz E (2007) Size, morphological and chemical characterization of aerosols polluting the Beijing atmosphere in January/February 2005. In: Rauch S, Morrison GM (eds) Highway and urban environment. Springer, BerlinGoogle Scholar
  7. Schäfer K, Emeis S, Hoffmann H, Jahn C (2006) Influence of mixing layer height upon air pollution in urban and sub-urban areas. Meteorol Z 15:647–658CrossRefGoogle Scholar
  8. Schäfer K, Wang Y, Münkel C, Emeis S, Xin J, Tang G, Norra S, Schleicher N, Vogt J, Suppan P (2009) Evaluation of continuous ceilometer-based mixing layer heights and correlations with PM2.5 concentrations in Beijing. In: Picard RH, Schäfer K, Comeron AT, Kassianov E, Mertens CJ (eds) Remote sensing of clouds and the atmosphere XIV, Proceedings of the SPIE, vol 7475. SPIE, Bellingham, pp 74750N-1–74750N-12Google Scholar
  9. Schäfer K, Wang Y, Norra S, Shen, R, Xin J, Ling H, Tang G, Münkel C, Schleicher N, Yu Y, Emeis S, Suppan P (2010) Meteorological influences and role of emissions within the context of air quality in Beijing. In: Weilenmann M (ed) Proceedings of the 18th international symposium transport and air pollution (TAP2010). EMPA, Dübendorf, Proceedings CD, Poster Sessions, pp 119–124Google Scholar
  10. Schäfer K, Wang Y, Xin, J, Ling H, Suppan P (2010) Long-term air quality study by DOAS within Beijing. In: Picard RH, Schäfer K, Comeron AT (eds) Remote sensing of clouds and the atmosphere XV, Proceedings of SPIE, vol 7827. SPIE, Bellingham, pp 78270I-1–78270I-7. doi: 10.1117/12.865112Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • K. Schäfer
    • 1
  • Y. Wang
    • 2
  • S. Norra
    • 3
    • 4
  • R. Shen
    • 1
  • J. Xin
    • 2
  • H. Ling
    • 2
  • G. Tang
    • 2
  • C. Münkel
    • 5
  • N. Schleicher
    • 4
  • Y. Yu
    • 4
  • J. Schnelle-Kreis
    • 6
  • L. Shao
    • 7
  • V. Dietze
    • 8
  • K. Cen
    • 9
  • R. Zimmermann
    • 6
    • 10
  • S. Schrader
    • 4
  • P. Suppan
    • 1
  1. 1.Atmospheric Environmental Research (KIT/IMK-IFU)Karlsruhe Institute of Technology, Institute for Meteorology and Climate ResearchGarmisch-PartenkirchenGermany
  2. 2.Institute of Atmospheric Physics, LAPCChinese Academy of Sciences (CAS)BeijingP. R. China
  3. 3.Institute of Geography and Geoecology (KIT/IGG)Karlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Institute of Mineralogy and Geochemistry (KIT/IMG)Karlsruhe Institute of TechnologyKarlsruheGermany
  5. 5.Vaisala GmbHHamburgGermany
  6. 6.Joint Mass Spectrometry Centre, Cooperation Group Comprehensive Molecular AnalyticsHelmholtz Zentrum München – German Research Center for Environmental Health (HMGU)NeuherbergGermany
  7. 7.Department of Resources and Earth SciencesChina University of Mining and Technology (CUMTB)BeijingP. R. China
  8. 8.German Meteorological Service (DWD), Research Center Human Biometeorology, Air Quality DepartmentFreiburgGermany
  9. 9.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of Geosciences (CUGB)BeijingP. R. China
  10. 10.Joint Mass Spectrometry Centre, Institute of Analytical ChemistryUniversity of Rostock (UR)RostockGermany

Personalised recommendations