Air Pollution in Eastern Mediterranean: Nested-Grid GEOS-CHEM Model Results and Airborne Observations

  • A. P. Protonotariou
  • E. Bossioli
  • M. Tombrou
  • N. Mihalopoulos
  • G. Biskos
  • J. Kalogiros
  • G. Kouvarakis
  • V. Amiridis
Conference paper
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

Trace gases concentrations in the boundary layer (BL) and the free troposphere are studied in the Eastern Mediterranean based on an updated nested-grid application of GEOS-CHEM global model and airborne observations that were collected over the Greek territory during the AEGEAN GAME airborne field campaign in September 2011. Modelled concentrations are studied against measurements along the flight tracks. Moreover, the spatial distribution of the pollutants over the study domain is examined in relation to the prevailing wind regime. The role of the long-range transport of pollution is investigated particularly through the northern and eastern boundaries due to the prevailing NE circulation. It is found that the model captures adequately carbon monoxide (CO) and ozone (O3) levels within the troposphere. CO and O3 concentrations over the Aegean Sea can exceed the background levels attributed either to transport downwind the local sources or to long range transport particularly from the northern and eastern part of the domain under the strong NE Etesian winds.

Keywords

Free Troposphere Range Transport Ship Emission Aircraft Observation Biomass Burning Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by the EUFAR (227159) EC Grant Agreement and the AEGEAN_GAME2 project. Authors acknowledge Aaron van Donkelaar, Konstantinos Varotsos, Luke Schiferl and Yiannis Georgiadis for technical support.

References

  1. Chen D, Wang YX, McElroy MB et al (2009) Regional CO pollution in China simulated by the high-resolution nested-grid GEOS-Chem model. Atmos Chem Phys 9:3825–3839. doi: 10.5194/acp-9-3825-2009 CrossRefGoogle Scholar
  2. Chin M, Rood RB, Lin S-J et al (2000) Atmospheric sulfur cycle simulated in the global model GOCART: model description and global properties. J Geophys Res 105(D20):24671–24687. doi: 10.1029/2000JD900384 CrossRefGoogle Scholar
  3. Formenti P, Reiner T, Sprung D et al (2002) STAAARTE-MED 1998 summer airborne measurements over the Aegean Sea – 1. Aerosol particles and trace gases. J Geophys Res 107(D21):4450. doi: 10.1029/2001JD001337 Google Scholar
  4. Guenther A, Karl T, Harley P et al (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210. doi: 10.5194/acp-6-3181-2006 CrossRefGoogle Scholar
  5. Kalabokas PD, Mihalopoulos N, Ellul R, Kleanthous S, Repapis CC (2008) An investigation of the meteorological and photochemical factors influencing the background rural and marine surface ozone levels in the Central and Eastern Mediterranean. Atmos Environ 42:7894–7906. doi: 10.1016/j.atmosenv.2008.07.009, ISSN 1352–2310CrossRefGoogle Scholar
  6. Lelieveld J, Berresheim H, Borrmann S et al (2002) Global air pollution crossroads over the Mediterranean. Science 298:794–799CrossRefGoogle Scholar
  7. Martin RV, Jacob DJ, Yantosca RM, Chin M, Ginoux P (2003) Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. J Geophys Res 108(D3):4097. doi: 10.1029/2002JD002622 CrossRefGoogle Scholar
  8. Park RJ, Jacob DJ, Chin M, Martin RV (2003) Sources of carbonaceous aerosols over the United States and implications for natural visibility. J Geophys Res 108(D12):4355. doi: 10.1029/2002JD003190 CrossRefGoogle Scholar
  9. Park RJ, Jacob DJ, Field BD, Yantosca RM, Chin M (2004) Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: implications for policy. J Geophys Res 109:D15204. doi: 10.1029/2003JD004473 CrossRefGoogle Scholar
  10. Price C, Rind D (1992) A simple lightning parameterization for calculating global lightning distributions. J Geophys Res 97:9919–9933. doi: 10.1029/92JD00719 CrossRefGoogle Scholar
  11. Protonotariou AP, Tombrou M, Giannakopoulos C et al (2010) Study of CO surface pollution in Europe based on observations and nested-grid applications of GEOS-Chem global chemical transport model. Tellus B 62:209–227. doi: 10.1111/j.1600-0889.2010.00462.x CrossRefGoogle Scholar
  12. Roelofs GJ, Scheeren B, Heland J, Ziereis H, Lelieveld J (2003) A model study of ozone in the eastern Mediterranean free troposphere during MINOS (August 2001). Atmos Chem Phys 3:1199–1210. doi: 10.5194/acp-3-1199-2003 CrossRefGoogle Scholar
  13. Salisbury G, Williams J, Holzinger R et al (2003) Ground-based PTR-MS measurements of reactive organic compounds during the MINOS campaign in Crete, July-August 2001. Atmos Chem Phys 3:925–940. doi: 10.5194/acp-3-925-2003 CrossRefGoogle Scholar
  14. Spracklen DV, Arnold SR, Sciare J, Carslaw KS, Pio C (2008) Globally significant oceanic source of organic carbon aerosol. Geophys Res Lett 35:L12811. doi: 10.1029/2008GL033359 CrossRefGoogle Scholar
  15. Tombrou M, Bossioli E, Protonotariou AP, Flocas H, Giannakopoulos C, Dandou A (2009) Coupling GEOS-CHEM with a regional air pollution model for Greece. Atmos Environ. doi: 10.1016/j.atmosenv.2009.04.003
  16. Tombrou M, Bossioli E, Kalogiros J, Biskos G, Coe H, Dandou A, Michalopoulos N, Kouvarakis G, Protonotariou AP, Triantafyllou E (2012) Physical and chemical processes of polluted air masses during Etesians: AEGEAN-GAME airborne campaign – an outline. In: Helmis CG, Nastos PT (eds) Advances in Meteorology, Climatology and Atmospheric Physics, Springer Atmospheric Sciences, Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  17. Vestreng V, Klein H (2002) Emission data reported to UNECE/EMEP: Quality assurance and trend analysis & Presentation of WebDab, MSC-W Status Report 2002. Norwegian Meteorological Institute, Oslo, NorwayGoogle Scholar
  18. Wang YX, McElroy MB, Jacob DJ, Yantosca RM (2004) A nested grid formulation for chemical transport over Asia: applications to CO. J Geophys Res 109:D22307. doi: 10.1029/2004JD005237 CrossRefGoogle Scholar
  19. Yevich R, Logan JA (2003) An assessment of biofuel use and burning of agricultural waste in the developing world. Global Biogeochem Cycles 17(4):1095. doi: 10.1029/2002GB001952 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. P. Protonotariou
    • 1
  • E. Bossioli
    • 1
  • M. Tombrou
    • 1
  • N. Mihalopoulos
    • 2
  • G. Biskos
    • 3
    • 4
  • J. Kalogiros
    • 5
  • G. Kouvarakis
    • 2
  • V. Amiridis
    • 6
  1. 1.Division of Environmental Physics and Meteorology, Department of PhysicsUniversity of AthensAthensGreece
  2. 2.Environmental Chemical Processes Laboratory, Department of ChemistryUniversity of CreteHeraklionGreece
  3. 3.Department of Environmental StudiesUniversity of the AegeanMytiliniGreece
  4. 4.Delft University of TechnologyDelftThe Netherlands
  5. 5.Institute of Environmental Research and Sustainable DevelopmentNational Observatory of AthensAthensGreece
  6. 6.Institute for Space Applications and Remote SensingNational Observatory of AthensAthensGreece

Personalised recommendations