Properties of Aged Aerosols in the Eastern Mediterranean

  • M. Pikridas
  • L. Hildebrandt
  • E. Kostenidou
  • G. J. Engelhart
  • B. H. Lee
  • N. Mihalopoulos
  • S. N. Pandis
Conference paper
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

Three month-long campaigns (FAME-07, -08, -09, -11) have been conducted at Finokalia in order to assess the water uptake, volatility and oxidation state of aged organic particulate matter (PM) along with aerosol nucleation. Finokalia is a remote coastal station located in the southeast of the Mediterranean Sea on the island of Crete, Greece. The site lacks local sources as there is no notable human activity at a range of approximately 15 km. The PM that reaches the site is heavily influenced by the surrounding source regions and the organic content highly oxidized. During the summer aerosols always contained water even under very low relative humidity (RH < 20%) possibly due to their acidity. Organic aerosol was highly and almost uniformly oxidized and the resulting mass spectra did not change throughout the summer campaign, even after it was thermally treated, indicating a high oxidation state. An organic aerosol evaporation model was used to simulate the behaviour of the thermally treated aerosol and showed that aged organic PM was two or more orders of magnitude less volatile than laboratory-generated secondary organic PM. Nucleation is controlled by the gas phase ammonia levels and the resulting PM acidity, at least during the summer, resulting in low number of particle formation events per year.

Keywords

Cloud Condensation Nucleus Aerosol Mass Spectrometer High Sulfate Level Particulate Matter Mass Aged Aerosol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bougiatioti A, Fountoukis C, Kalivitis N, Pandis SN, Nenes A, Mihalopoulos N (2009) Cloud condensation nuclei measurements in the marine boundary layer of the Eastern Mediterranean: CCN closure and droplet growth kinetics. Atmos Chem Phys 9:7053–7066. doi: 10.5194/acp-9-7053-2009 CrossRefGoogle Scholar
  2. Boy M, Kulmala M (2002) Nucleation events in the continental boundary layer: influence of physical and meteorological parameters. Atmos Chem Phys 2:1–16. doi: 10.5194/acp-2-1-2002 CrossRefGoogle Scholar
  3. Charlson RJ, Heitzenberg RL (1995) Aerosol forcing of climate. Wiley, New YorkGoogle Scholar
  4. Clegg S, Brimblecombe LP, Wexler AS (1998) A thermo-dynamic model of the system H+-NH4+-SO42-NO3-H2O at tropospheric temperatures. J Phys Chem A102:2137–2154. doi: 10.1021/jp973043j CrossRefGoogle Scholar
  5. Engelhart GJ, Hildebrandt L, Kostenidou E, Mihalopoulos N, Donahue NM, Pandis SN (2011) Water content of aged aerosol. Atmos Chem Phys 11:911–920. doi: 10.5194/acp-11-911-2011 CrossRefGoogle Scholar
  6. Goldstein AH, Galbally IE (2007) Known and unexplored organic constituents in the Earth’s atmosphere. Environ Sci Technol 41:1515–1521Google Scholar
  7. Hildebrandt L, Engelhart GJ, Mohr C, Kostenidou E, Bougiatioti A, DeCarlo PF, Prevot ASH, Baltensperger U, Mihalopoulos N, Donahue NM, Pandis SN (2010) Aged organic aerosol in the Eastern Mediterranean: the Finokalia aerosol measurement experiment – 2008. Atmos Chem Phys 10:4167–4186. doi: 10.5194/acp-10-4167-2010 CrossRefGoogle Scholar
  8. Jayne JT, Leard DC, Zhang XF, Davidovits P, Smith KA, Kolb CE, Worsnop DR (2000) Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci Technol 33:49–70CrossRefGoogle Scholar
  9. Jimenez JL, Jayne JT, Shi Q, Kolb CE et al (2003) Ambient aerosol sampling using the aerodyne aerosol mass spectrometer. J Geophys Res – Atmos 108:8425–8437CrossRefGoogle Scholar
  10. Jonsson AM, Hallquist M, Saathoff H (2007) Volatility of secondary organic aerosols from the ozone initiated oxidation of α-pinene and limonene. J Aerosol Sci 38:843–852CrossRefGoogle Scholar
  11. Jung JG, Pandis SN, Adams PJ (2008) Evaluation of nucleation theories in a sulfur-rich environment. Aerosol Sci Technol 42:495–504. doi: 10.1080/02786820802187085 CrossRefGoogle Scholar
  12. Kanawade VP, Tom Jobson B, Guenther AB, Erupe ME, Pressely SN, Tripathi SN, Lee S-H (2011) Isoprene suppression of new particle formation in mixed deciduous forest. Atmos Chem Phys Discuss 11:11039–11075. doi: 10.5194/acpd-11-11039-2011 CrossRefGoogle Scholar
  13. Kulmala M, Vehkamaki H, Petaja T, Dal Maso M, Lauri A, Kerminen V-M, Birmili W, McMurry PH (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35:143–176. doi: 10.1016/j.jaerosci.2003.10.003 CrossRefGoogle Scholar
  14. Lee B-H, Hildebrandt L, Kostenidou E, Riipinen I, Engelhart GJ, Donahue NM, Pandis SN (2010) Volatility of organic aerosol sampled during FAME-2008. Atmos Chem Phys 10:12149–12160. doi: 10.5194/acp-10-12149-2010 CrossRefGoogle Scholar
  15. Mihalopoulos N, Stephanou E, Kanakidou M, Pilitsidis S, Bousquet P (1997) Tropospheric aerosol ionic composition above the Eastern Mediterranean Area. Tellus B 49:314–326Google Scholar
  16. Pikridas M, Bougiatioti K, Engelhart GJ et al (2010) The finokalia aerosol measurement experiments – 2008 (FAME-08): an overview. Atmos Chem Phys 10:6793–6806CrossRefGoogle Scholar
  17. Pikridas M, Riipinen I, Hildebrandt L, Kostenidou E, Manninen H, Mihalopoulos N, Kalivitis N, Burkhart JF, Stohl A, Kulmala M, Pandis SN. (2012) New particle formation at a remote marine site in the Eastern Mediterranean. J Geophys Res Atmos (accepted)Google Scholar
  18. Sciare J, Bardouki H, Moulin C, Mihalopoulos N (2003) Aerosol sources and their contribution to the chemical composition of aerosols in the Eastern Mediterranean Sea during summertime. Atmos Chem Phys 3:291–302. doi: 10.5194/acp-3-291-2003 CrossRefGoogle Scholar
  19. Sciare J, Oikonomou K, Favez O, Liakakou E et al (2008) Long-term measurements of carbonaceous aerosols in the Eastern Mediterranean: evidence of long-range transport of biomass burning. Atmos Chem Phys 8:5551–5563. doi: 10.5194/acp-8-5551-2008 CrossRefGoogle Scholar
  20. Stanier CO, Khlystov AY, Chan WR, Mandiro M, Pandis SN (2004) A method for the in situ measurement of fine aerosol water content of ambient aerosols: the dry-ambient aerosol size spectrometer (DAASS). Aerosol Sci Technol 38:215–228CrossRefGoogle Scholar
  21. Tsyro SG (2005) To what extent can aerosol water explain the discrepancy between model calculated and gravimetric PM10 and PM2.5? Atmos Chem Phys 5:515–532. doi: 10.5194/acp-5-515-2005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Pikridas
    • 1
  • L. Hildebrandt
    • 2
  • E. Kostenidou
    • 1
  • G. J. Engelhart
    • 2
  • B. H. Lee
    • 2
  • N. Mihalopoulos
    • 1
    • 3
  • S. N. Pandis
    • 1
    • 2
  1. 1.Institute of Chemical Engineering and High Temperature Chemical ProcessesPatraGreece
  2. 2.Center for Atmospheric Particle StudiesCarnegie Mellon UniversityPittsburghUSA
  3. 3.Environmental Chemical Processes LaboratoryUniversity of CreteHeraklionGreece

Personalised recommendations