The Effect of Aerosol Absorption in Solar UV Radiation

Conference paper
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

We have used a combination of a CIMEL sun-photometer and a UV multi-filter radiometer (MFR) in order to calculate columnar aerosol absorbing properties such as the single scattering albedo (SSA) in the Ultraviolet (UV) range in Athens area. Such calculations are hardly to be found since most UV related applications use SSA retrievals from the visible range assuming wavelength independent aerosol absorbing coefficients going from the visible to the UV range. Our results showed significantly reduced SSA values (higher absorption) comparing the CIMEL/AERONET SSA retrievals at 440 nm with the UV-MFR ones. In addition, we calculated lower SSA values for lower aerosol optical depth values and a seasonal variation of SSA with lower values for wintertime and higher in the summertime for all wavelengths. The effect of such SSA differences in the calculation of the UV spectral irradiances varies from 2% to10% and it is proportional to the solar zenith angle and the aerosol load.

Keywords

Aerosol Optical Depth Solar Zenith Angle Radiative Transfer Model Ozone Monitoring Instrument Single Scattering Albedo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

SK would like to acknowledge the Marie Curie project ACI-UV, PERG05-GA-2009-247492.

References

  1. Amiridis V, Kafatos M, Perez C, Kazadzis S, Gerasopoulos E, Mamouri RE, Papayannis A, Kokkalis P, Giannakaki E, Basart S, Daglis I, Zerefos C (2009) The potential of the synergistic use of passive and active remote sensing measurements for the validation of a regional dust model. Ann Geophys 27:3155–3164. doi: 10.5194/angeo-27-3155-2009 CrossRefGoogle Scholar
  2. Arola A, Kazadzis S, Krotkoc N, Bais A, Herman J, Lakkala K (2005) Assessment of TOMS UV bias due to the absorbing aerosols. J Geophys Res 110:D23211. doi: 10.1029/2005JD005913 CrossRefGoogle Scholar
  3. Bais AF, Kazantzidis A, Kazadzis S, Balis D, Zerefos CS, Meleti C (2005) Effects of aerosol optical depth and single scattering albedo on surface UV irradiance. Atmos Environ 39:1093–1102CrossRefGoogle Scholar
  4. Castro T, Madronich S, Rivale S, Muhlia A, Mar B (2001) The influence of aerosols on photochemical smog in Mexico City. Atmos Environ 35:1765–1772. doi: 10.1016/S1352-2310(00)00449-0 CrossRefGoogle Scholar
  5. Corr CA, Krotkov N, Madronich S, Slusser JR, Holben B, Gao W, Flynn J, Lefer B, Kreidenweis SM (2009) Retrieval of aerosol single scattering albedo at ultraviolet wavelengths at the T1 site during MILAGRO. Atmos Chem Phys 9:5813–5827. doi: 10.5194/acp-9-5813-2009 CrossRefGoogle Scholar
  6. Dickerson RR, Kondragunta S, Stenchikov G, Civerolo KL, Doddridge BG, Holben BN (1997) The impact of aerosols on solar ultraviolet-radiation and photochemical smog. Science 215:827–830. doi: 10.1126/science.278.5339.827 CrossRefGoogle Scholar
  7. Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J Geophys Res 105(D16):20,673–20,696. doi: 10.1029/2000JD900282
  8. IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  9. Kazadzis S, Gröbner J, Arola A, Amiridis V (2010) Investigation of the accuracy for single scattering albedo retrieval from global UV irradiance measurements. Atmos Meas Tech Discuss 3:1303–1321. doi: 10.5194/amtd-3-1303-2010 CrossRefGoogle Scholar
  10. Kinne S (2009) Climatologies of cloud-related aerosols: part 1: particle number and size. In: Heintzenberg J, Charlson RJ (eds) Clouds in the perturbed climate system. MIT Press, Cambridge, MA, pp 37–57Google Scholar
  11. Krotkov NA, Bhartia PK, Herman JR, Fioletov V, Kerr J (1998) Satellite estimation of spectral surface UV irradiance in the presence of tropospheric aerosols. 1: cloud-free case. J Geophys Res 103:8779–8793. doi: 10.1029/98JD00233 CrossRefGoogle Scholar
  12. Mayer B, Kylling A (2005) Technical note: the libRadtran software package for radiative transfer calculations – description and examples of use. Atmos Chem Phys 5:1855–1877CrossRefGoogle Scholar
  13. Yu H, Kaufman YJ, Chin M, Feingold G, Remer LA, Anderson TL, Balkanski Y, Bellouin N, Boucher O, Christopher S, DeCola P, Kahn R, Koch D, Loeb N, Reddy MS, Schulz M, Takemura T, Zhou M (2006) A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos Chem Phys 6:613–666. doi: 10.5194/acp-6-613-2006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute for Environmental Research and Sustainable DevelopmentNational Observatory of AthensAthensGreece
  2. 2.Institute for Space Applications and Remote SensingNational Observatory of AthensAthensGreece
  3. 3.Physics DepartmentAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations