Estimating Direct Effects of Secondary Organic Aerosol Over Europe Using COSMO-ART

  • E. Athanasopoulou
  • H. Vogel
  • K. Lundgren
  • B. Vogel
  • C. Fountoukis
  • S. N. Pandis
Conference paper
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

COSMO-ART is a recently developed regional model that couples meteorological and air quality processes online. It allows for a consistent chemical forecasting since it avoids temporal and spatial interpolation steps. Additionally, it enables the simulation of feedbacks between chemistry, aerosols and meteorology. Towards this direction, COSMO-ART has already incorporated the direct radiative forcing of aerosol processes. In the framework of this study, COSMO-ART is modified to include the volatility basis set (VBS) treatment of secondary organic aerosol (SOA) chemistry. The VBS approach assumes gas-to-particle partitioning of all (thousands) organics grouped by their saturation concentration and calculates their formation and chemical evolution (aging) into the atmosphere. COSMO-ART simulations are performed for May 2008 covering the greater European area with a horizontal resolution of 14 km and a vertical extend up to 20 km. Results are compared to PMCAMx predictions and are evaluated against EUCAARI measurements. Sensitivity simulations reveal the effectiveness of the VBS approach against a traditional SOA module and the fraction of anthropogenic SOA. Additional simulations excluding organic chemistry, aim at identifying the SOA effect on radiation and atmospheric temperature. An average radiative reduction is predicted over Europe, linked to a moderate temperature decrease.

Keywords

Secondary Organic Aerosol Biogenic Source Emission Database Secondary Organic Aerosol Particle Regional Chemistry Transport Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank A. Mensah, A. Kiendler-Scharr, M. Dall’Osto, C. O’Dowd and L. Poulain concerning EUCAARI data.

References

  1. Baldauf M, Seifert A, Forstner J, Majewski D, Raschendorfer M, Reinhardt T (2011) Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon Weather Rev. doi: 10.1175/MWR-D-10-05013.1 (e-view)
  2. Boylan JW, Russell AG (2006) PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos Environ 40(26):4946–4959. doi: 10.1016/j.atmosenv.2005.09.087 CrossRefGoogle Scholar
  3. Donahue NM, Robinson AL, Stanier CO, Pandis SN (2006) Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ Sci Technol 40:2635–2643CrossRefGoogle Scholar
  4. Dzepina K, Volkamer RM, Madronich S, Tulet P, Ulbrich IM, Zhang Q, Cappa CD (2009) Evaluation of recently-proposed secondary organic aerosol models for a case study in Mexico City. Atmos Chem Phys 9(15):5681–5709. doi: 10.5194/acp-9-5681-2009 CrossRefGoogle Scholar
  5. Emmons LK, Walters S, Hess PG, Lamarque JF, Pfister GG, Fillmore D, Granier C (2010) Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4). Geosci Model Dev 3:43–67. doi: 10.5194/gmd-3-43-2010 CrossRefGoogle Scholar
  6. Forster P, Ramaswamy V, Artaxo P et al (2007) Changes in atmospheric constituents and radiative forcing. In: Solomon S, Qin D, Manning M (eds) Climate change 2007: the physical science basis. Contribution of working group I to the intergovernmental panel on climate change. Cambridge University Press, Cambridge/NYGoogle Scholar
  7. Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, Van Dingenen R (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5(4):1053–1123. doi: 10.5194/acp-5-1053-2005 CrossRefGoogle Scholar
  8. Kuenen J, Denier van der Gon H, Visschedijk A, van der Brugh H (2011) High resolution European emission inventory for the years 2003–2007. TNO-report TNO-060-UT-2011-00588Google Scholar
  9. Kulmala M, Asmi A, Lappalainen HK, Carslaw KS, Pöschl U, Baltensperger U, Hov Ø (2009) Introduction: European Integrated Project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmos Chem Phys 9(8):2825–2841. doi: 10.5194/acp-9-2825-2009 CrossRefGoogle Scholar
  10. Majewski D, Liermann D, Prohl P, Ritter B, Buchhold M, Hanisch T, Paul G (2002) The operational global icosahedral–hexagonal gridpoint model GME: description and high-resolution tests. Mon Weather Rev 130:319–338. doi: 10.1175/1520-0493(2002) CrossRefGoogle Scholar
  11. Ming Y, Ramaswamy V, Ginoux PA, Horowitz LH (2005) Direct radiative forcing of anthropogenic organic aerosol. J Geophys Res 110:12. doi: 200510.1029/2004JD005573 Google Scholar
  12. Murphy BN, Donahue NM, Fountoukis C, Pandis SN (2011) Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set. Atmos Chem Phys 11:7859–7873. doi: 10.5194/acp-11-7859-2011 CrossRefGoogle Scholar
  13. O’Donnell D, Tsigaridis K, Feichter J (2011) Estimating the influence of the secondary organic aerosols on present climate using ECHAM5-HAM. Atmos Chem Phys Discuss 11(1):2407–2472. doi: 10.5194/acpd-11-2407-2011 CrossRefGoogle Scholar
  14. Schell B, Ackermann IJ, Binkowski FS, Ebel A (2001) Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J Geophys Res 106:28275–28293. doi: 10.1029/2001JD000384 CrossRefGoogle Scholar
  15. Vogel B, Fiedler F, Vogel H (1995) Influence of topography and biogenic volatile organic compounds emission in the state of Baden-Wurttemberg on ozone concentrations during episodes of high air temperatures. J Geophys Res 100:22907–22928. doi: 10.1029/95JD01228 CrossRefGoogle Scholar
  16. Vogel B, Vogel H, Baumer D, Bangert M, Lundgren K, Rinke R, Stanelle T (2009) The comprehensive model system COSMO-ART – radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmos Chem Phys 9:8661–8680CrossRefGoogle Scholar
  17. Zhang Q, Jimenez JL, Canagaratna MR, Allan JD, Coe H, Ulbrich I, Alfarra MR (2007) Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys Res Lett 34:6. doi: 200710.1029/2007GL029979 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • E. Athanasopoulou
    • 1
  • H. Vogel
    • 1
  • K. Lundgren
    • 1
  • B. Vogel
    • 1
  • C. Fountoukis
    • 2
  • S. N. Pandis
    • 2
  1. 1.Institute for Meteorology and Climate ResearchKarlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  2. 2.Institute of Chemical Engineering and High Temperature Chemical ProcessesFoundation for Research and Technology Hellas (FORTH)PatrasGreece

Personalised recommendations