Recently, evolutionary art has been exploring the use of mathematical models of aesthetics, with the goal of automatically evolving aesthetically pleasing images. This paper investigates the application of similar models of aesthetics towards the evolution of 3-dimensional structures. We extend existing models of aesthetics used for image evaluation to the 3D realm, by considering quantifiable properties of surface geometry. Analyses used include entropy, complexity, deviation from normality, 1/f noise, and symmetry. A new 3D L-system implementation promotes accurate analyses of surface features, as well as productive rule sets when used with genetic programming. Multi-objective evaluation reconciles multiple aesthetic criteria. Experiments resulted in the generation of many models that satisfied multiple criteria. A human survey was conducted, and survey takers showed a clear preference for high-fitness highly-evolved models over low-fitness unevolved ones. This research shows that aesthetic evolution of 3D structures is a promising new research area for evolutionary art.


Aesthetics L-systems 3D models genetic programming multi-objective evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bentley, P., Corne, D.: Creative Evolutionary Systems. Morgan Kaufmann (2002)Google Scholar
  2. 2.
    Bentley, P., Wakefield, J.: Finding acceptable solutions in the pareto-optimal range using multiobjective genetic algorithms. In: Soft Computing in Engineering Design and Manufacturing. Springer (1997)Google Scholar
  3. 3.
    Bergen, S.: Automatic Structure Generation Using Genetic Programming and Fractal Geometry. Master’s thesis, Department of Computer Science, Brock University (2011)Google Scholar
  4. 4.
    Bergen, S.: Aesthetic 3D Model Evolution Gallery (2012),
  5. 5.
    Bergen, S., Ross, B.: Evolutionary Art Using Summed Multi-objective Ranks. In: Genetic Programming - Theory and Practice VIII, pp. 227–244. Springer (May 2010)Google Scholar
  6. 6.
    Birkhoff, G.D.: Aesthetic Measure. Harvard University Press (1933)Google Scholar
  7. 7.
    Blender: Blender, (last accessed December 4, 2011)
  8. 8.
    von Buelow, P.: Genetically Engineered Architecture - Design Exploration with Evolutionary Computation. VDM Verlag (2007)Google Scholar
  9. 9.
    Coello, C.C., Lamont, G., Veldhuizen, D.V.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Kluwer (2007)Google Scholar
  10. 10.
    Coia, C., Ross, B.: Automatic Evolution of Conceptual Building Architectures. In: Proc. CEC 2011. IEEE (2011)Google Scholar
  11. 11.
    Greenfield, G.: Evolving aesthetic images using multiobjective optimization. In: Proc. CEC 2003, pp. 1903–1909 (2003)Google Scholar
  12. 12.
    Gunlu, G., Bilge, H.: Symmetry analysis for 2D images by using DCT coefficients. In: ICSCCW, pp. 1–4 (2009)Google Scholar
  13. 13.
    den Heijer, E., Eiben, A.: Comparing Aesthetic Measures for Evolutionary Art. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010, Part II. LNCS, vol. 6025, pp. 311–320. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Hemberg, M., O’Reilly, U.M.: GENR8 - using grammatical evolution in A surface design tool. In: Barry, A.M. (ed.) GECCO 2002: Proceedings of the Bird of a Feather Workshops, pp. 120–123. AAAI, New York (2002)Google Scholar
  15. 15.
    Hemberg, M., O’Reilly, U.M., Menges, A., Jones, K., da Costa Goncalves, M., Fuchs, S.R.: Genr8: Architects’ experience with an emergent design tool. In: The Art of Artificial Evolution. Springer (2008)Google Scholar
  16. 16.
    Jacob, C.: Illustrating evolutionary computation with Mathematica. Morgan Kaufmann (2001)Google Scholar
  17. 17.
    Jacob, C., Lindenmayer, A., Rozenberg, G.: Genetic L-System Programming. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 334–343. Springer, Heidelberg (1994)Google Scholar
  18. 18.
    Kazhdan, M., Chazelle, B., Dobkin, D., Funkhouser, T., Rusinkiewicz, S.: A reflective symmetry descriptor for 3d models (2004)Google Scholar
  19. 19.
    Li, M., Vitanyi, P.: An introduction to kolmogorov complexity and its applications: Preface to the first edition (1997)Google Scholar
  20. 20.
    Lipson, H., Cochran, W.: The determination of crystal structures - 3rd revised and enlarged ed. Cornell University Press (1966)Google Scholar
  21. 21.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph. 21, 163–169 (1987)CrossRefGoogle Scholar
  22. 22.
    Luke, S.: Ecj, (last accessed December 3, 2011)
  23. 23.
    Machado, P., Cardoso, A.: Computing Aesthetics. In: de Oliveira, F.M. (ed.) SBIA 1998. LNCS (LNAI), vol. 1515, pp. 219–228. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  24. 24.
    Milotti, E.: 1/f noise: a pedagogical review. arxiv preprint, physics/0204033 (April 2002),
  25. 25.
    Neufeld, C., Ross, B., Ralph, W.: The Evolution of Artistic Filters. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution. Springer (2008)Google Scholar
  26. 26.
    O’Neill, M., Brabazon, A.: Evolving a logo design using lindenmayer systems. In: Evolutionary Computation, pp. 3788–3794 (June 2008)Google Scholar
  27. 27.
    O’Neill, M., McDermott, J., Swafford, J., Byrne, J., Hemberg, E., Brabazon, A.: Evolutionary design using grammatical evolution and shape grammars: designing a shelter. Intl. Journal of Design Engineering 3, 4–24 (2010)CrossRefGoogle Scholar
  28. 28.
    O’Neill, M., Swafford, J., McDermott, J., Byrne, J., Brabazon, A., Shotton, E., McNally, C., Hemberg, M.: Shape grammars and grammatical evolution for evolutionary design. In: Proc. GECCO 2009, pp. 1035–1042. ACM (2009)Google Scholar
  29. 29.
    Pang, W., Hui, K.: Interactive evolutionary 3d fractal modeling. The Visual Computer 26, 1467–1483 (2010)CrossRefGoogle Scholar
  30. 30.
    Rigau, J., Feixas, M., Sbert, M.: Conceptualizing Birkhoff’s Aesthetic Measure Using Shannon Entropy and Kolmogorov Complexity. In: Proc. Eurographics Workshop Computational Aesthetics in Graphics, Visualization and Imaging, pp. 105–112 (2007)Google Scholar
  31. 31.
    Ross, B., Ralph, W., Zong, H.: Evolutionary Image Synthesis Using a Model of Aesthetics. In: CEC 2006 (July 2006)Google Scholar
  32. 32.
    Sims, K.: Evolving Virtual Creatures. In: SIGGRAPH 1994, pp. 15–22 (1994)Google Scholar
  33. 33.
    Spehar, B., Clifford, C., Newell, B., Taylor, R.: Universal aesthetic of fractals. Computer and Graphics 27, 813–820 (2003)CrossRefGoogle Scholar
  34. 34.
    Stiny, G.: Introduction to shape and shape grammars. Environment and Planning B 7, 343–351 (1980)CrossRefGoogle Scholar
  35. 35.
    Svangård, N., Nordin, P.: Automated Aesthetic Selection of Evolutionary Art by Distance Based Classification of Genomes and Phenomes Using the Universal Similarity Metric. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 447–456. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  36. 36.
    Todd, S., Latham, W.: Evolutionary Art and Computers. Academic Press (1992)Google Scholar
  37. 37.
    Wackerly, D.D., Mendenhall III, W., Scheaffer, R.L.: Mathematical Statistics with Applications, 6th edn. Duxbury Advanced Series (2002)Google Scholar
  38. 38.
    Walsh, P., Gade, P.: The use of an aesthetic measure for the evolution of fractal landscapes. In: IEEE Congress on Evolutionary Computation, pp. 1613–1619. IEEE (2011)Google Scholar
  39. 39.
    Watt, A., Policarpo, F.: The Computer Image. Addison Wesley (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Steve Bergen
    • 1
  • Brian J. Ross
    • 1
  1. 1.Dept. of Computer ScienceBrock UniversitySt. CatharinesCanada

Personalised recommendations