Expression-Based Evolution of Faces

  • Penousal Machado
  • João Correia
  • Juan Romero
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7247)


The combination of a classifier system with an evolutionary image generation engine is explored. The framework is instantiated using an off-the-shelf face detection system and a general purpose, expression-based, genetic programming engine. By default, the classifier returns a binary output, which is inadequate to guide evolution. By retrieving information provided by intermediate results of the classification task, it became possible to develop a suitable fitness function. The experimental results show the ability of the system to evolve images that are classified as faces. A subjective analysis also reveals the unexpected nature and artistic potential of the evolved images.


Evolutionary Art Automatic Fitness Assignment Face Detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, E.: Evolving line drawings. Technical Report TR-21-93, Harvard University Center for Research in Computing Technology (1993)Google Scholar
  2. 2.
    Baluja, S., Pomerlau, D., Todd, J.: Towards automated artificial evolution for computer-generated images. Connection Science 6(2), 325–354 (1994)CrossRefGoogle Scholar
  3. 3.
    DiPaola, S.R., Gabora, L.: Incorporating characteristics of human creativity into an evolutionary art algorithm. Genetic Programming and Evolvable Machines 10(2), 97–110 (2009)CrossRefGoogle Scholar
  4. 4.
    Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting (1995)Google Scholar
  5. 5.
    Frowd, C., Hancock, P.: Evolving human faces. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, pp. 189–210. Springer, Heidelberg (2007)Google Scholar
  6. 6.
    Johnston, V.S., Caldwell, C.: Tracking a criminal suspect through face space with a genetic algorithm. In: Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.) Handbook of Evolutionary Computation, pp. G8.3:1–G8.3:8. Institute of Physics Publishing and Oxford University Press, Bristol (1997)Google Scholar
  7. 7.
    Lewis, M.: Evolutionary visual art and design. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, pp. 3–37. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    Lienhart, R., Maydt, J.: An Extended Set of Haar-Like Features for Rapid Object Detection. In: IEEE ICIP 2002, pp. 900–903 (2002)Google Scholar
  9. 9.
    Machado, P., Cardoso, A.: All the truth about NEvAr. Applied Intelligence, Special Issue on Creative Systems 16(2), 101–119 (2002)zbMATHGoogle Scholar
  10. 10.
    Machado, P., Romero, J., Manaris, B.: Experiments in computational aesthetics: An iterative approach to stylistic change in evolutionary art. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, pp. 381–415. Springer, Heidelberg (2007)Google Scholar
  11. 11.
    McCormack, J.: Facing the future: Evolutionary possibilities for human-machine creativity. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, pp. 417–451. Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Nishio, K., et al.: Fuzzy fitness assignment in an interactive genetic algorithm for a cartoon face search. In: Sanchez, E., Shibata, T., Zadeh, L.A. (eds.) Genetic Algorithms and Fuzzy Logic Systems: Soft Computing Perspectives, vol. 7. World Scientific (1997)Google Scholar
  13. 13.
    Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: Sixth International Conference on Computer Vision, pp. 555–562 (January 1998)Google Scholar
  14. 14.
    Romero, J., Machado, P., Santos, A., Cardoso, A.: On the Development of Critics in Evolutionary Computation Artists. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoWorkshops 2003. LNCS, vol. 2611, pp. 559–569. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Saunders, R., Gero, J.: The digital clockwork muse: A computational model of aesthetic evolution. In: Wiggins, G. (ed.) AISB 2001 Symposium on Artificial Intelligence and Creativity in Arts and Science, York, UK, pp. 12–21 (2001)Google Scholar
  16. 16.
    Sims, K.: Artificial evolution for computer graphics. ACM Computer Graphics 25, 319–328 (1991)CrossRefGoogle Scholar
  17. 17.
    Spector, L., Alpern, A.: Criticism, culture, and the automatic generation of artworks. In: Proceedings of Twelfth National Conference on Artificial Intelligence, pp. 3–8. AAAI Press/MIT Press, Seattle, Washington, USA (1994)Google Scholar
  18. 18.
    Teller, A., Veloso, M.: Algorithm evolution for face recognition: what makes a picture difficult. In: IEEE International Conference on Evolutionary Computation (1995)Google Scholar
  19. 19.
    Ventrella, J.: Self Portraits with Mandelbrot Genetics. In: Taylor, R., Boulanger, P., Krüger, A., Olivier, P. (eds.) SG 2010. LNCS, vol. 6133, pp. 273–276. Springer, Heidelberg (2010), CrossRefGoogle Scholar
  20. 20.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, p. 511 (2001)Google Scholar
  21. 21.
    World, L.: Aesthetic selection: The evolutionary art of steven Rooke. IEEE Computer Graphics and Applications 16(1) (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Penousal Machado
    • 1
  • João Correia
    • 1
  • Juan Romero
    • 2
  1. 1.CISUC, Department of Informatics EngineeringUniversity of CoimbraCoimbraPortugal
  2. 2.Faculty of Computer ScienceUniversity of A CoruñaCoruñaSpain

Personalised recommendations