Fitness in Evolutionary Art and Music: What Has Been Used and What Could Be Used?

  • Colin G. Johnson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7247)

Abstract

This paper considers the notion of fitness in evolutionary art and music. A taxonomy is presented of the ways in which fitness is used in such systems, with two dimensions: what the fitness function is applied to, and the basis by which the function is constructed. Papers from a large collection are classified using this taxonomy. The paper then discusses a number of ideas that have not be used for fitness evaluation in evolutionary art and which might be valuable in future developments: memory, scaffolding, connotation and web search.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basa, T., Go, C., Yoo, K.S., Lee, W.H.: Using physiological signals to evolve art. In: Rothlauf et al. [40], pp. 633–641Google Scholar
  2. 2.
    Bilotta, E., Pantano, P., Cupellini, E., Rizzuti, C.: Evolutionary methods for melodic sequences generation from non-linear dynamic systems. In: Giacobini et al. [18], pp. 585–592Google Scholar
  3. 3.
    Bird, J., Faith, J., Webster, A.: Tabula Rasa: A case study in evolutionary curation. In: Cagnoni et al. [6], pp. 981–995Google Scholar
  4. 4.
    Bird, J., Husbands, P., Perris, M., Bigge, B., Brown, P.: Implicit fitness functions for evolving a drawing robot. In: Giacobini et al. [19], pp. 473–478Google Scholar
  5. 5.
    Bown, O., McCormack, J.: Taming nature: tapping the creative potential of ecosystem models in the arts. Digital Creativity 21(4), 215–231 (2010)CrossRefGoogle Scholar
  6. 6.
    Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.): EvoWorkshops 2003 . LNCS, vol. 2611. Springer, Heidelberg (2003)MATHGoogle Scholar
  7. 7.
    Colton, S.: Automatic invention of fitness functions with application to scene generation. In: Giacobini et al. [19], pp. 381–391Google Scholar
  8. 8.
    Colton, S., López de Mántaras, R., Stock, O.: Computational creativity: Coming of age. AI Magazine 30(3), 11–14 (2009)Google Scholar
  9. 9.
    Daelemans, W., van den Bosch, A.: Memory-Based Language Processing. Cambridge University Press (2005)Google Scholar
  10. 10.
    Dahlstedt, P.: Autonomous evolution of complete piano pieces and performances. In: Workshop on Music and Artificial Life (2007)Google Scholar
  11. 11.
    Dahlstedt, P., Nilsson, P.: Free flight in parameter space: A dynamic mapping strategy for expressive free impro. In: Giacobini et al. [19], pp. 479–484Google Scholar
  12. 12.
    Dawkins, R.: The Selfish Gene, 2nd edn., Original edition. Oxford University Press (1989)Google Scholar
  13. 13.
    Dawkins, R.: Climbing Mount Improbable. Penguin (1997)Google Scholar
  14. 14.
    Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.): EvoApplications 2010. LNCS, vol. 6025. Springer, Heidelberg (2010)Google Scholar
  15. 15.
    Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq, M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.): EvoApplications 2011, Part II. LNCS, vol. 6625. Springer, Heidelberg (2011)Google Scholar
  16. 16.
    Evans, B.: Integration of music and graphics through algorithmic congruence. In: Proceedings of the 1987 International Computer Music Conference, pp. 17–24 (1987)Google Scholar
  17. 17.
    Gartland-Jones, A.: Musicblox: A real-time algorithmic composition system incorporating a distributed interactive genetic algorithm. In: Cagnoni et al. [6], pp. 145–155Google Scholar
  18. 18.
    Giacobini, M., et al. (eds.): EvoWorkshops 2007. LNCS, vol. 4448. Springer, Heidelberg (2007)Google Scholar
  19. 19.
    Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.): EvoWorkshops 2008. LNCS, vol. 4974. Springer, Heidelberg (2008)Google Scholar
  20. 20.
    Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.): EvoWorkshops 2009. LNCS, vol. 5484. Springer, Heidelberg (2009)Google Scholar
  21. 21.
    Greenfield, G.: Evolved ricochet compositions. In: Giacobini et al. [20], pp. 518–527Google Scholar
  22. 22.
    Hervàs, R., Robinson, J., Gervàs, P.: Evolutionary assistance in alliteration and allelic drivel. In: Giacobini et al. [18], pp. 537–546Google Scholar
  23. 23.
    Johnson, C.G.: Search and notions of creativity. In: Veale, T., Pease, A., Wiggins, G. (eds.) Proceedings of the IJCAI 2005 Workshop on Computational Creativity (2005)Google Scholar
  24. 24.
    Kötter, T., Berthold, M.R.: (missing) concept discovery in heterogeneous information networks. In: Proceedings of the Second International Conference on Computational Creativity. pp. 135–140 (2011), http://www.inf.uni-konstanz.de/bioml2/publications/Papers2011/KoBe11.pdf
  25. 25.
    Krzeczkowska, A., El-Hage, J., Colton, S., Clark, S.: Automated collage generation—with intent. In: Ventura, D., et al. (eds.) Proceedings of the International Conference on Computational Creativity, pp. 36–40 (2010), http://creative-systems.dei.uc.pt/icccx
  26. 26.
    Machado, P., Nunes, H., Romero, J.: Graph-based evolution of visual languages. In: Di Chio et al. [14], pp. 271–280Google Scholar
  27. 27.
    Machado, P., Romero, J., Santos, M., Cardoso, A., Manaris, B.: Adaptive critics for evolutionary artists. In: Raidl et al. [35], pp. 437–446Google Scholar
  28. 28.
    Magnus, C.: Evolutionary musique concrète. In: Rothlauf et al. [40], pp. 688–695Google Scholar
  29. 29.
    Manaris, B., Vaughan, D., Wagner, C., Romero, J., Davis, R.: Evolutionary music and the Zipf-Mandelbrot law: Developing fitness functions for pleasant music. In: Cagnoni et al. [6], pp. 65–72Google Scholar
  30. 30.
    McCormack, J.: Open problems in evolutionary music and art. In: Rothlauf et al. [39], pp. 428–436Google Scholar
  31. 31.
    McCormack, J., Bown, O.: Life’s what you make: Niche construction and evolutionary art. In: Giacobini et al. [20], pp. 528–537Google Scholar
  32. 32.
    Nagel, U., Thiel, K., Kötter, T., Piątek, D., Berthold, M.R.: Bisociative Discovery of Interesting Relations between Domains. In: Gama, J., Bradley, E., Hollmén, J. (eds.) IDA 2011. LNCS, vol. 7014, pp. 306–317. Springer, Heidelberg (2011), http://www.inf.uni-konstanz.de/bioml2/publications/Papers2011/NTKP+11.pdf CrossRefGoogle Scholar
  33. 33.
    Nemirovsky, P., Watson, R.: Genetic improvisation model a framework for real-time performance environments. In: Cagnoni et al. [6], pp. 547–558Google Scholar
  34. 34.
    Phon-Amnuaisuk, S., Law, E., Kuan, H.: Evolving music generation with som-fitness genetic programming. In: Giacobini et al. [18], pp. 557–566Google Scholar
  35. 35.
    Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.): EvoWorkshops 2004. LNCS, vol. 3005. Springer, Heidelberg (2004)Google Scholar
  36. 36.
    Reddin, J., McDermott, J., ONeill, M.: Elevated pitch: Automated grammatical evolution of short compositions. In: Giacobini et al. [20], pp. 579–584Google Scholar
  37. 37.
    Romero, J., Machado, P., Santos, A.: On the socialization of evolutionary art. In: Giacobini et al. [20], pp. 557–566Google Scholar
  38. 38.
    Romero, J., Machado, P., Santos, A., Cardoso, A.: On the development of critics in evolutionary computation artists. In: Cagnoni et al. [6], pp. 559–569Google Scholar
  39. 39.
    Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.): EvoWorkshops 2005. LNCS, vol. 3449. Springer, Heidelberg (2005)Google Scholar
  40. 40.
    Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.): EvoWorkshops 2006. LNCS, vol. 3907. Springer, Heidelberg (2006)Google Scholar
  41. 41.
    Tufte, G., Gangvik, E.: Trans<–>former #13: Exploration and adaptation of evolution expressed in a dynamic sculpture. In: Giacobini et al. [19], pp. 509–514Google Scholar
  42. 42.
    Webb Young, J.: A Technique for Producing Ideas (original edition 1943). McGraw-Hill (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Colin G. Johnson
    • 1
  1. 1.University of KentCanterburyUK

Personalised recommendations