A Platform for Evolving Controllers for Simulated Drawing Robots

  • Gary Greenfield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7247)

Abstract

We investigate the problem of evolving controllers for simulated drawing robots. We describe the primitive assembly language that we designed to use for the genome for a drawing robot in order to facilitate controller evolution, as well as the corresponding structure and execution of the decision tree phenotype it supports. Our controllers are modeled after controllers that have been evolved for video games such as Mario Bros. We present some preliminary examples of evolved controller robot drawings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abelson, H., di Sessa, A.: Turtle Geometry: The Computer as a Medium for Exploring Mathematics. The MIT Press, Cambridge (1986)Google Scholar
  2. 2.
    Bird, J., Husbands, P., Perris, M., Bigge, B., Brown, P.: Implicit Fitness Functions for Evolving a Drawing Robot. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 473–478. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Greenfield, G.: Evolutionary Methods for Ant Colony Paintings. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 478–487. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Greenfield, G.: Evolved Look-Up Tables for Simulated DNA Controlled Robots. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 51–60. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Greenfield, G.: On simulating drawing robots with straight line motion but curvilinear pen paths. In: Proceedings of the 14th International Conference on Geometry anmd Graphics (ICGG 2010), Kyoto, Japan (2010)Google Scholar
  6. 6.
    Greenfield, G.: Robot Paintings Evolved Using Simulated Robots. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 611–621. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Harlan, R., Levine, D., McClarigan, S.: The Khepera robot and kRobot class: a platform for introducing robotics in the undergraduate curriculum. Technical Report 4, Bonaventure Undergraduate Robotics Laboratory, St. Bonaventure University, New York (2000)Google Scholar
  8. 8.
    Latham, W., Shaw, M., Todd, S., Leymarie, F.F., Jefferys, B., Kelley, L.: Using DNA to Generate 3D Organic Art Forms. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 433–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Moura, L., Pereira, H.: Man + Robots: Symbiotic Art. Institut d’Art Contemporain, Lyon/Villeurbanne, France (2004)Google Scholar
  10. 10.
    Moura, L., Ramos, V.: Swarm paintings — nonhuman art. In: Maubant, J., et al. (eds.) Architopia: Book, Art, Architecture, and Science, Institut d’Art Contemporain, Lyon/Villeurbanne, France, pp. 5–24 (2002)Google Scholar
  11. 11.
    Perez, D., Nicolau, M., O’Neill, M., Brabazon, A.: Evolving Behaviour Trees for the Mario AI Competition Using Grammatical Evolution. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 123–132. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Prusinkiewicz, P., Hanan, J.: Lindenmayer Systems, Fractals, and Plants. Lecture Notes in Biomathematics, vol. 79. Springer, Berlin (1989)MATHGoogle Scholar
  13. 13.
    Ramos, V.: Self-organizing the abstract: canvas as a swarm habitat for collective memory, perception and cooperative distributed creativity. In: Rekalde, J. et al. (eds.) First Art & Science Symposium, Models to Know Reality, Bilbao, Spain, p. 59 (2003)Google Scholar
  14. 14.
    Todd, S., Latham, W.: Evolutionary Art and Computers. Academic Press, London (1992)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gary Greenfield
    • 1
  1. 1.University of RichmondRichmondUSA

Personalised recommendations