Grammar Bias and Initialisation in Grammar Based Genetic Programming

  • Eoin Murphy
  • Erik Hemberg
  • Miguel Nicolau
  • Michael O’Neill
  • Anthony Brabazon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7244)


Preferential language biases which are introduced when using Tree-Adjoining Grammars in Grammatical Evolution affect the distribution of generated derivation structures, and as such, present difficulties when designing initialisation methods. Similar initial populations allow for a fairer comparison between different GP methods. This work proposes methods for dealing with these biases and examines their effect on performance over four well known benchmark problems. In addition, a comparison is performed with a previous study that did not employ similar phenotype distributions in their initial populations. It is found that the use of this form of initialisation has a positive effect on performance.


Grammatical evolution Grammar bias Initialization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Daida, J.M., Ampy, D.S., Ratanasavetavadhana, M., Li, H., Chaudhri, O.A.: Challenges with verification, repeatability, and meaningful comparison in genetic programming: Gibson’s magic. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1851–1858. Morgan Kaufmann, Orlando (1999)Google Scholar
  2. 2.
    Harper, R.: GE, explosive grammars and the lasting legacy of bad initialisation. In: IEEE Congress on Evolutionary Computation (CEC 2010). IEEE Press, Barcelona (2010)Google Scholar
  3. 3.
    Nguyen, X.H., McKay, R.I., Abbass, H.A.: Tree adjoining grammars, language bias, and genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 335–344. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Hoai, N.-X., McKay, R.I(B.), Essam, D.L., Abbass, H.A.: Toward an Alternative Comparison between Different Genetic Programming Systems. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 67–77. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Joshi, A.: Tree adjoining grammars: How much context-sensitivity is required to provide reasonable structural descriptions, ch. 6, pp. 205–250. Cambridge University Press, New York (1985)Google Scholar
  6. 6.
    Joshi, A., Schabes, Y.: Tree-Adjoining Grammars. In: Handbook of Formal Languages, Beyond Words, vol. 3, pp. 69–123 (1997)Google Scholar
  7. 7.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  8. 8.
    Kroch, A., Joshi, A.: The Linguistic Relevance of Tree Adjoining Grammar, Technical Report, University Of Pennsylvania (1985)Google Scholar
  9. 9.
    Luke, S.: Two fast tree-creation algorithms for genetic programming. IEEE Transactions on Evolutionary Computation 4(3), 274–283 (2000)CrossRefGoogle Scholar
  10. 10.
    McKay, R., Hoai, N., Whigham, P., Shan, Y., O’Neill, M.: Grammar-based genetic programming: a survey. Genetic Programming and Evolvable Machines 11, 365–396 (2010)CrossRefGoogle Scholar
  11. 11.
    Murphy, E., O’Neill, M., Brabazon, A.: Examining Mutation Landscapes In Grammar Based Genetic Programming. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 130–141. Springer, Heidelberg (2011)Google Scholar
  12. 12.
    Murphy, E., O’Neill, M., Galvan-Lopez, E., Brabazon, A.: Tree-adjunct grammatical evolution. In: 2010 IEEE World Congress on Computational Intelligence, pp. 4449–4456. IEEE Computational Intelligence Society, IEEE Press, Barcelona, Spain (2010)Google Scholar
  13. 13.
    O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in a Arbitrary Language. Genetic programming, vol. 4. Kluwer Academic Publishers (2003)Google Scholar
  14. 14.
    Whigham, P.A.: Grammatical Bias for Evolutionary Learning. Ph.D. thesis, School of Computer Science, University College, University of New South Wales, Australian Defence Force Academy, Canberra, Australia (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eoin Murphy
    • 1
  • Erik Hemberg
    • 1
  • Miguel Nicolau
    • 1
  • Michael O’Neill
    • 1
  • Anthony Brabazon
    • 1
  1. 1.Natural Computing Research and Applications GroupUniversity College DublinDublinIreland

Personalised recommendations