Improving Face Detection

  • Penousal Machado
  • João Correia
  • Juan Romero
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7244)


A novel Genetic Programming approach for the improvement of the performance of classifier systems through the synthesis of new training instances is presented. The approach relies on the ability of the Genetic Programming engine to identify and exploit shortcomings of classifier systems, and generate instances that are misclassified by them. The addition of these instances to the training set has the potential to improve classifier’s performance. The experimental results attained with face detection classifiers are presented and discussed. Overall they indicate the success of the approach.


Face detection Haar cascade 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baro, X., Escalera, S., Vitria, J., Pujol, O., Radeva, P.: Traffic Sign Recognition Using Evolutionary Adaboost Detection and Forest-ECOC Classification. IEEE Transactions on Intelligent Transportation Systems 10(1), 113–126 (2009)CrossRefGoogle Scholar
  2. 2.
    Chen, J., Chen, X., Gao, W.: Resampling for face detection by self-adaptive genetic algorithm. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 822–825 (August 2004)Google Scholar
  3. 3.
    Dubey, D.: Face detection using genetic algorithm and neural network. International Journal of Science and Advanced Technology 1(6), 104–109 (2011) ISSN 2221-8386MathSciNetGoogle Scholar
  4. 4.
    Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting (1995)Google Scholar
  5. 5.
    Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 643–660 (2001)CrossRefGoogle Scholar
  6. 6.
    Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust Face Detection Using the Hausdorff Distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 90–95. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Krawiec, K., Howard, D., Zhang, M.: Overview of Object Detection and Image Analysis by Means of Genetic Programming Techniques. In: Frontiers in the Convergence of Bioscience and Information Technologies, FBIT 2007, pp. 779–784 (2007)Google Scholar
  8. 8.
    Lienhart, R., Kuranov, A., Pisarevsky, V.: Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 297–304. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Lienhart, R., Maydt, J.: An Extended Set of Haar-Like Features for Rapid Object Detection. In: Proceedings of the 2002 International Conference on Image Processing, vol. 1, pp. 900–903 (2002)Google Scholar
  10. 10.
    Machado, P., Cardoso, A.: All the truth about NEvAr. Applied Intelligence, Special Issue on Creative Systems 16(2), 101–119 (2002)zbMATHGoogle Scholar
  11. 11.
    Machado, P., Romero, J., Manaris, B.: Experiments in Computational Aesthetics. In: The Art of Artificial Evolution, Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Mayer, H.A., Schwaiger, R.: Towards the evolution of training data sets for artificial neural networks. In: IEEE International Conference on Evolutionary Computation, pp. 663–666 (April 1997)Google Scholar
  13. 13.
    Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: Sixth International Conference on Computer Vision, pp. 555–562 (January 1998)Google Scholar
  14. 14.
    Sha, S., Jianer, C., Ling, Q., Sanding, L.: Evolutionary mechanism and implemention for recognition of objects in dynamic vision. In: 4th International Conference on Computer Science Education, ICCSE 2009, pp. 178–182 (2009)Google Scholar
  15. 15.
    Sims, K.: Artificial Evolution for Computer Graphics. ACM Computer Graphics 25, 319–328 (1991)CrossRefGoogle Scholar
  16. 16.
    Spector, L., Alpern, A.: Criticism, culture, and the automatic generation of artworks. In: Proceedings of Twelfth National Conference on Artificial Intelligence, pp. 3–8. AAAI Press/MIT Press, Seattle, Washington (1994)Google Scholar
  17. 17.
    Teller, A., Veloso, M.: Algorithm evolution for face recognition: what makes a picture difficult. In: IEEE International Conference on Evolutionary Computation 1995 (1995)Google Scholar
  18. 18.
    Ventura, D., Andersen, T., Martinez, T.R.: Using evolutionary computation to generate training set data for neural networks. In: Proceedings of the International Conference on Neural Networks and Genetic Algorithms, pp. 468–471 (1995)Google Scholar
  19. 19.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, vol. 1, pp. I–511–I–518 (2001)Google Scholar
  20. 20.
    Yang, M.-H., Roth, D., Ahuja, N.: A snow-based face detector. In: Advances in Neural Information Processing Systems 12, pp. 855–861. MIT Press (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Penousal Machado
    • 1
  • João Correia
    • 1
  • Juan Romero
    • 2
  1. 1.CISUC, Department of Informatics EngineeringUniversity of CoimbraCoimbraPortugal
  2. 2.Faculty of Computer ScienceUniversity of A CoruñaCoruñaSpain

Personalised recommendations