Automatic Design of Ant Algorithms with Grammatical Evolution

  • Jorge Tavares
  • Francisco B. Pereira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7244)


We propose a Grammatical Evolution approach to the automatic design of Ant Colony Optimization algorithms. The grammar adopted by this framework has the ability to guide the learning of novel architectures, by rearranging components regularly found on human designed variants. Results obtained with several TSP instances show that the evolved algorithmic strategies are effective, exhibit a good generalization capability and are competitive with human designed variants.


Training Instance Grammatical Evolution Travel Salesperson Problem Pheromone Matrix Daemon Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)Google Scholar
  2. 2.
    Eiben, A., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3, 124–141 (1999)CrossRefGoogle Scholar
  3. 3.
    Tavares, J., Pereira, F.B.: Evolving Strategies for Updating Pheromone Trails: A Case Study with the TSP. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 523–532. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Tavares, J., Pereira, F.B.: Designing Pheromone Update Strategies with Strongly Typed Genetic Programming. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 85–96. Springer, Heidelberg (2011)Google Scholar
  5. 5.
    López-Ibáñez, M., Stützle, T.: Automatic Configuration of Multi-Objective ACO Algorithms. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 95–106. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    O’Neill, M., Ryan, C.: Grammatical Evolution. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  7. 7.
    Pappa, G.L., Freitas, A.A.: Automatically Evolving Data Mining Algorithms. Natural Computing Series, vol. XIII. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Burke, E.K., Hyde, M.R., Kendall, G.: Grammatical evolution of local search heuristics. IEEE Transactions on Evolutionary Computation (2011)Google Scholar
  9. 9.
    Botee, H., Bonabeau, E.: Evolving ant colony optimization. Advances in Complex Systems 1, 149–159 (1998)CrossRefGoogle Scholar
  10. 10.
    White, T., Pagurek, B., Oppacher, F.: ASGA: Improving the ant system by integration with genetic algorithms. In: Proceedings of the 3rd Genetic Programming Conference, pp. 610–617. Morgan Kaufmann (1998)Google Scholar
  11. 11.
    Poli, R., Langdon, W.B., Holland, O.: Extending Particle Swarm Optimisation via Genetic Programming. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 291–300. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Dioşan, L., Oltean, M.: Evolving the Structure of the Particle Swarm Optimization Algorithms. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 25–36. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Runka, A.: Evolving an edge selection formula for ant colony optimization. In: Proceedings of GECCO 2009, pp. 1075–1082 (2009)Google Scholar
  14. 14.
    Tavares, J., Pereira, F.B.: Towards the development of self-ant systems. In: Proceedings of GECCO 2011. ACM (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jorge Tavares
    • 1
  • Francisco B. Pereira
    • 1
    • 2
  1. 1.CISUC, Department of Informatics EngineeringUniversity of CoimbraCoimbraPortugal
  2. 2.ISECCoimbraPortugal

Personalised recommendations