Multi-Objective Ant Programming for Mining Classification Rules

  • Juan Luis Olmo
  • José Raúl Romero
  • Sebastián Ventura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7244)

Abstract

Ant programming (AP) is a kind of automatic programming that generates computer programs by using the ant colony optimization metaheuristic. It has recently demonstrated a good generalization ability when extracting classification rules. We extend the investigation on the application of AP to classification, developing an algorithm that addresses rules’ evaluation using a novel multi-objective approach specially devised for the classification task. The algorithm proposed also incorporates an evolutionary computing niching procedure to increment the diversity of the population of programs found so far. Results obtained by this algorithm are compared with other three genetic programming algorithms and other industry standard algorithms from different areas, proving that multi-objective AP is a good technique at tackling classification problems.

Keywords

Data mining Classification Ant programming Genetic programming Multi-objective optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bojarczuk, C.C., Lopes, H.S., Freitas, A.A., Michalkiewicz, E.L.: A constrained-syntax genetic programming system for discovering classification rules: application to medical data sets. Artificial Intelligence in Medicine 30, 27–48 (2004)CrossRefGoogle Scholar
  2. 2.
    Tan, K.C., Tay, A., Lee, T.H., Heng, C.M.: Mining multiple comprehensible classification rules using genetic programming. In: CEC 2002, pp. 1302–1307 (2002)Google Scholar
  3. 3.
    Abbass, H.A., Hoai, X., Mckay, R.I.: AntTAG: A new method to compose computer programs using colonies of ants. In: IEEE CEC 2002, pp. 1654–1659 (2002)Google Scholar
  4. 4.
    Dorigo, M., Stützle, T.: The Ant Colony Optimization metaheuristic: Algorithms, Applications and Advances. Kluwer Academic Publishers (2002)Google Scholar
  5. 5.
    Olmo, J.L., Romero, J.R., Ventura, S.: Using ant programming guided by grammar for building rule-based classifiers. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics 41(6), 1585–1599 (2011)CrossRefGoogle Scholar
  6. 6.
    Espejo, P., Ventura, S., Herrera, F.: A survey on the application of genetic programming to classification. IEEE Trans. on Systems, Man, and Cybernetics, Part C: Applications and Reviews 40(2), 121–144 (2010)CrossRefGoogle Scholar
  7. 7.
    Angus, D., Woodward, C.: Multiple objective ant colony optimisation. Swarm Intelligence 3(1), 69–85 (2009)CrossRefGoogle Scholar
  8. 8.
    Dehuri, S., Patnaik, S., Ghosh, A., Mall, R.: Application of elitist multi-objective genetic algorithm for classification rule generation. Appl. Soft Comput. 8, 477–487 (2008)CrossRefGoogle Scholar
  9. 9.
    Olmo, J.L., Romero, J.R., Ventura, S.: A grammar based ant programming algorithm for mining classification rules. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 225–232 (2010)Google Scholar
  10. 10.
    Frank, A., Asuncion, A.: UCI machine learning repository (2010)Google Scholar
  11. 11.
    Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: IJCAI 1993, pp. 1022–1029 (1993)Google Scholar
  12. 12.
    Parpinelli, R., Freitas, A.A., Lopes, H.S.: Data mining with an ant colony optimization algorithm. IEEE Trans. on Evol. Computation 6, 321–332 (2002)CrossRefGoogle Scholar
  13. 13.
    Martens, D., De Backer, M., Vanthienen, J., Snoeck, M., Baesens, B.: Classification with ant colony optimization. IEEE Transactions on Evolutionary Computation 11, 651–665 (2007)CrossRefGoogle Scholar
  14. 14.
    Holden, N., Freitas, A.A.: A hybrid PSO/ACO algorithm for discovering classification rules in data mining. J. Artif. Evol. App, 2:1–2:11 (2008)Google Scholar
  15. 15.
    Cano, A., Zafra, A., Ventura, S.: An EP algorithm for learning highly interpretable classifiers. In: ISDA 2011, pp. 325–330 (2011)Google Scholar
  16. 16.
    Cohen, W.: Fast Effective Rule Induction. In: ICML 1995, pp. 115–123 (1995)Google Scholar
  17. 17.
    Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization. In: ICML 1998, pp. 144–151 (1998)Google Scholar
  18. 18.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Juan Luis Olmo
    • 1
  • José Raúl Romero
    • 1
  • Sebastián Ventura
    • 1
  1. 1.Dept. of Computer Science and Numerical AnalysisUniversity of CordobaCordobaSpain

Personalised recommendations