An Investigation of Fitness Sharing with Semantic and Syntactic Distance Metrics

  • Quang Uy Nguyen
  • Xuan Hoai Nguyen
  • Michael O’Neill
  • Alexandros Agapitos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7244)


This paper investigates the efficiency of using semantic and syntactic distance metrics in fitness sharing with Genetic Programming (GP). We modify the implementation of fitness sharing to speed up its execution, and used two distance metrics in calculating the distance between individuals in fitness sharing: semantic distance and syntactic distance. We applied fitness sharing with these two distance metrics to a class of real-valued symbolic regression. Experimental results show that using semantic distance in fitness sharing helps to significantly improve the performance of GP more frequently, and results in faster execution times than with the syntactic distance. Moreover, we also analyse the impact of the fitness sharing parameters on GP performance helping to indicate appropriate values for fitness sharing using a semantic distance metric.


Genetic programming Fitness sharing Semantic Syntactic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Poli, R., Langdon, W., McPhee, N.: A Field Guide to Genetic Programming (2008),
  2. 2.
    Koza, J.: Genetic Programming: On the Programming of Computers by Natural Selection. MIT Press, MA (1992)zbMATHGoogle Scholar
  3. 3.
    Koza, J.: Human-competitive results produced by genetic programming. Genetic Programming and Evolvable Machines 11(3-4), 251–284 (2010)CrossRefGoogle Scholar
  4. 4.
    Gustafson, S., Burke, E.K., Kendall, G.: Sampling of Unique Structures and Behaviours in Genetic Programming. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 279–288. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: An analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary Computation 8(1), 47–62 (2004)CrossRefGoogle Scholar
  6. 6.
    Looks, M.: On the behavioral diversity of random programs. In: GECCO 2007: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, July 7-11, vol. 2, pp. 1636–1642. ACM Press (2007)Google Scholar
  7. 7.
    O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic programming. Genetic Programming and Evolvable Machines 11(3-4), 339–363 (2010)CrossRefGoogle Scholar
  8. 8.
    Gustafson, S.: An Analysis of Diversity in Genetic Programming. PhD thesis, School of Computer Science and Information Technology, University of Nottingham, Nottingham, England (February 2004)Google Scholar
  9. 9.
    Beadle, L., Johnson, C.G.: Semantic analysis of program initialisation in genetic programming. Genetic Programming and Evolvable Machines 10(3), 307–337 (2009)CrossRefGoogle Scholar
  10. 10.
    Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers (2011)Google Scholar
  11. 11.
    Morrison, R.: Designing Evolutionary Algorithms for Dynamic Environments. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  12. 12.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)Google Scholar
  13. 13.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  14. 14.
    Langdon, W.B.: Genetic Programming and Data Structures: Genetic Programming + Data Structure = Automatic Programming! Kluwer Academic, Boston (1998)Google Scholar
  15. 15.
    Ekárt, A., Németh, S.Z.: A Metric for Genetic Programs and Fitness Sharing. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 259–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    McKay, B.: An investigation of fitness sharing in genetic programming. The Australian Journal of Intelligent Information Processing Systems 7(1/2), 43–51 (2001)Google Scholar
  17. 17.
    Sareni, B., Kraehenbuehl, L.: Fitness sharing and niching methods revisited. IEEE-EC 2(3), 97 (1998)Google Scholar
  18. 18.
    Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic Aware Crossover for Genetic Programming: The Case for Real-Valued Function Regression. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 292–302. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Nguyen, Q.U., O’Neill, M., Nguyen, X.H., Mckay, B., Galván-López, E.: Semantic Similarity Based Crossover in GP: The Case for Real-Valued Function Regression. In: Collet, P., Monmarché, N., Legrand, P., Schoenauer, M., Lutton, E. (eds.) EA 2009. LNCS, vol. 5975, pp. 170–181. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Nguyen, Q.U., Nguyen, X.H., O’Neill, M., McKay, R.I., Galvan-Lopez, E.: Semantically-based crossover in genetic programming: application to real-valued symbolic regression. Genetic Programming and Evolvable Machines, 91–119 (2011)Google Scholar
  21. 21.
    Nguyen, Q.U., Nguyen, T.H., Nguyen, X.H., O’Neill, M.: Improving the Generalisation Ability of Genetic Programming with Semantic Similarity based Crossover. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 184–195. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Quang Uy Nguyen
    • 1
  • Xuan Hoai Nguyen
    • 2
  • Michael O’Neill
    • 3
  • Alexandros Agapitos
    • 3
  1. 1.Faculty of Information TechnologyMilitary Technical AcademyVietnam
  2. 2.IT Research and Development CenterHanoi UniversityVietnam
  3. 3.Natural Computing Research & Applications GroupUniversity College DublinDublinIreland

Personalised recommendations