On the CCA-1 Security of Somewhat Homomorphic Encryption over the Integers

  • Zhenfei Zhang
  • Thomas Plantard
  • Willy Susilo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7232)

Abstract

The notion of fully homomorphic encryption is very important since it enables many important applications, such as the cloud computing scenario. In EUROCRYPT 2010, van Dijk, Gentry, Halevi and Vaikuntanathan proposed an interesting fully homomorphic encryption scheme based on a somewhat homomorphic encryption scheme using integers. In this paper, we demonstrate a very practical CCA-1 attack against this somewhat homomorphic encryption scheme. Given a decryption oracle, we show that within O(λ 2) queries, we can recover the secret key successfully, where λ is the security parameter for the system.

Keywords

Fully Homomorphic Encryption Somewhat Homomorphic Encryption CCA-1 attack Approximate GCD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press (1978)Google Scholar
  2. 2.
    Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: [13], pp. 169–178Google Scholar
  4. 4.
    Gentry, C.: A Fully Homomorphic Encyrption Scheme. PhD thesis, Stanford University (2009)Google Scholar
  5. 5.
    Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Stehlé, D., Steinfeld, R.: Faster Fully Homomorphic Encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully Homomorphic Encryption over the Integers with Shorter Public Keys. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)Google Scholar
  10. 10.
    Coron, J.S., Naccache, D., Tibouchi, M.: Optimization of fully homomorphic encryption. Cryptology ePrint Archive, Report 2011/440 (2011), http://eprint.iacr.org/
  11. 11.
    Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divisors: Breaking fully-homomorphic-encryption challenges over the integers. Cryptology ePrint Archive, Report 2011/436 (2011), http://eprint.iacr.org/
  12. 12.
    Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe and security for key dependent messages. In: [20], pp. 505–524Google Scholar
  13. 13.
    Mitzenmacher, M. (ed.): Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31-June 2. ACM (2009)Google Scholar
  14. 14.
    Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be practical? IACR Cryptology ePrint Archive 2011, 405 (2011) Google Scholar
  15. 15.
    Loftus, J., May, A., Smart, N., Vercauteren, F.: On cca-secure fully homomorphic encryption. Cryptology ePrint Archive, Report 2010/560 (2010), http://eprint.iacr.org/
  16. 16.
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among Notions of Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)Google Scholar
  17. 17.
    Nymann, J.E.: On the probability that k positive integers are relatively prime ii. Journal of Number Theory 7(4), 406–412 (1975)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Shoup, V.: NTL - A Library for Doing Number Theory, http://www.shoup.net/ntl/index.html
  19. 19.
    Goldreich, O., Goldwasser, S., Halevi, S.: Public-Key Cryptosystems from Lattice Reduction Problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)Google Scholar
  20. 20.
    Rogaway, P. (ed.): CRYPTO 2011. LNCS, vol. 6841. Springer, Heidelberg (2011)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zhenfei Zhang
    • 1
  • Thomas Plantard
    • 1
  • Willy Susilo
    • 1
  1. 1.Centre for Computer and Information Security Research, School of Computer Science & Software Engineering (SCSSE)University Of WollongongAustralia

Personalised recommendations