Computing a Hierarchical Static Order for Decision Diagram-Based Representation from P/T Nets

  • Silien Hong
  • Fabrice Kordon
  • Emmanuel Paviot-Adet
  • Sami Evangelista
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6900)


State space generation suffers from the typical combinatorial explosion problem when dealing with industrial specifications. In particular, memory consumption while storing the state space must be tackled to verify safety properties. Decision Diagrams are a way to tackle this problem. However, their performance strongly rely on the way variables encode a system. Another way to fight combinatorial explosion is to hierarchically encode the state space of a system.

This paper presents how we mix the two techniques via the hierarchization of a precomputed variable order. This way we obtain a hierarchical static order for the variables encoding a system. This heuristic was implemented and exhibits good performance.


State space generation Decision Diagrams Hierarchy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aloul, F.A., Markov, I.L., Sakallah, K.A.: FORCE: a fast and easy-to-implement variable-ordering heuristic. In: ACM Great Lakes Symposium on VLSI, pp. 116–119. ACM (2003)Google Scholar
  2. 2.
    Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., Somenzi, F.: Algebric decision diagrams and their applications. Formal Methods in System Design 10, 171–206 (1997)CrossRefGoogle Scholar
  3. 3.
    Bollig, B., Wegener, I.: Improving the variable ordering of obdds is np-complete. IEEE Transactions on Computers 45(9), 993–1002 (1996)zbMATHCrossRefGoogle Scholar
  4. 4.
    Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD package. In: 27th Annual ACM IEEE Design Automation Conference, pp. 40–45. ACM (1991)Google Scholar
  5. 5.
    Brayton, R., Hachtel, G., Sangiovanni-Vincentelli, A., Somenzi, F., Aziz, A., Cheng, S., Edwards, S., Khatri, S., Kukimoto, Y., Pardo, A., Qadeer, S., Ranjan, R., Sarwary, S., Staple, T., Swamy, G., Villa, T.: Vis: A System for Verification and Synthesis. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Bryant, R.: Graph-based algorithms for boolean function manipulation C-35(8), 677–691 (1986)Google Scholar
  7. 7.
    Buchs, D., Hostettler, S.: Sigma decision diagrams. In: Corradini, A. (ed.) TERMGRAPH 2009: Premiliminary Proceedings of the 5th International Workshop on Computing with Terms and Graphs, number TR-09-05, Università di Pisa, pp. 18–32 (2009)Google Scholar
  8. 8.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model Checking: 1020 States and Beyond. In: 5th Annual IEEE Symposium on Logic in Computer Science, pp. 428–439 (1990)Google Scholar
  9. 9.
    Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed colored nets and symmetric modeling applications. IEEE Transactions on Computers 42(11), 1343–1360 (1993)CrossRefGoogle Scholar
  10. 10.
    Choppy, C., Dedova, A., Evangelista, S., Hong, S., Klai, K., Petrucci, L.: The NEO Protocol for Large-Scale Distributed Database Systems: Modelling and Initial Verification. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 145–164. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Ciardo, G., Lüttgen, G., Miner, A.S.: Exploiting interleaving semantics in symbolic state-space generation. Formal Methods in System Design 31(1), 63–100 (2007)zbMATHCrossRefGoogle Scholar
  12. 12.
    Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: An Efficient Iteration Strategy for Symbolic State Space Generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Ciardo, G., Miner, A.S.: Smart: Simulation and markovian analyzer for reliability and timing, p. 60. IEEE Computer Society, Los Alamitos (1996)Google Scholar
  14. 14.
    Ciardo, G., Trivedi, K.: A decomposition approach for stochastic reward net models. Perf. Eval. 18, 37–59 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: A New Symbolic Model Verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–499. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Couvreur, J.-M., Thierry-Mieg, Y.: Hierarchical Decision Diagrams to Exploit Model Structure. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 443–457. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Informaticae 1, 115–138 (1971)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hamez, A., Thierry-Mieg, Y., Kordon, F.: Building efficient model checkers using hierarchical set decision diagrams and automatic saturation. Fundamenta Informaticae 94(3-4), 413–437 (2009)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Biology. In: Bernardo, M., Degano, P., Tennenholtz, M. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Heiner, M., Schwarick, M., Tovchigrechko, A.: DSSZ-MC - A Tool for Symbolic Analysis of Extended Petri Nets. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 323–332. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Hong, S., Paviot-Adet, E., Kordon, F.: PNXDD model checkers (2010),
  22. 22.
    Hugues, J., Thierry-Mieg, Y., Kordon, F., Pautet, L., Baarir, S., Vergnaud, T.: On the Formal Verification of Middleware Behavioral Properties. In: 9th International Workshop on Formal Methods for Industrial Critical Systems (FMICS 2004), pp. 139–157. Elsevier (2004)Google Scholar
  23. 23.
    Kordon, F., Linard, A., Paviot-Adet, E.: Optimized Colored Nets Unfolding. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 339–355. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Linard, A., Paviot-Adet, E., Kordon, F., Buchs, D., Charron, S.: polyDD: Towards a Framework Generalizing Decision Diagrams. In: 10th International Conference on Application of Concurrency to System Design (ACSD 2010), Braga, Portugal, pp. 124–133. IEEE Computer Society (2010)Google Scholar
  25. 25.
    Miner, A.S., Ciardo, G.: Efficient Reachability Set Generation and Storage using Decision Diagrams. In: Donatelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS, vol. 1639, pp. 6–25. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. 26.
    Peterson, G.L.: Myths about the mutual exclusion problem. Information Processing Letters 12(3), 115–116 (1981)zbMATHCrossRefGoogle Scholar
  27. 27.
    Rice, M., Kulhari, S.: A survey of static variable ordering heuristics for efficient BDD/MDD construction. Technical report, UC Riverside (2008)Google Scholar
  28. 28.
    Schmidt, K.: How to Calculate Symmetries of Petri Nets. Acta Informaticae 36(7), 545–590 (2000)zbMATHCrossRefGoogle Scholar
  29. 29.
    Strehl, K., Thiele, L.: Symbolic model checking of process networks using interval diagram techniques. In: ICCAD 1998: Proceedings of the 1998 IEEE/ACM International Conference on Computer-Aided Design, pp. 686–692. ACM, New York (1998)CrossRefGoogle Scholar
  30. 30.
    Thierry-Mieg, Y., Poitrenaud, D., Hamez, A., Kordon, F.: Hierarchical Set Decision Diagrams and Regular Models. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 1–15. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Silien Hong
    • 1
  • Fabrice Kordon
    • 1
  • Emmanuel Paviot-Adet
    • 2
  • Sami Evangelista
    • 3
  1. 1.Univ. P. & M. Curie, CNRS UMR 7606 – LIP6/MoVeParisFrance
  2. 2.Univ. Paris Descartes and LIP6/MoVeFrance
  3. 3.LIPN, CNRS UMR 7030, Univ. Paris XIIIVilletaneuseFrance

Personalised recommendations