Cycle Structure in SR and DSR Graphs: Implications for Multiple Equilibria and Stable Oscillation in Chemical Reaction Networks

  • Murad Banaji
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6900)

Abstract

Associated with a chemical reaction network is a natural labelled bipartite multigraph termed an SR graph, and its directed version, the DSR graph. These objects are closely related to Petri nets, but encode weak assumptions on the reaction kinetics, and are more generally associated with continuous-time, continuous-state models rather than discrete-event systems. The construction of SR and DSR graphs for chemical reaction networks is presented. Conclusions about asymptotic behaviour of the associated dynamical systems which can be drawn easily from the graphs are discussed. In particular, theorems on ruling out the possibility of multiple equilibria or stable oscillation based on computations on SR/DSR graphs are presented. These include both published and new results. The power and limitations of such results are illustrated via several examples.

Keywords

Multiple Equilibrium Stoichiometric Matrix Cycle Structure Nonnegative Orthant Extremal Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Epstein, I.R., Pojman, J.A. (eds.): An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos. Oxford University Press, New York (1998)Google Scholar
  2. 2.
    Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph. SIAM J. Appl. Math. 66(4), 1321–1338 (2006)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Banaji, M., Craciun, G.: Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems. Adv. in Appl. Math. 44, 168–184 (2010)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Feinberg, M.: Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal. 49(3), 187–194 (1972)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors - I. The deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42(10), 2229–2268 (1987)CrossRefGoogle Scholar
  6. 6.
    Mincheva, M., Roussel, M.R.: Graph-theoretic methods for the analysis of chemical and biochemical networks, I. multistability and oscillations in ordinary differential equation models. J. Math. Biol. 55, 61–86 (2007)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Angeli, D., De Leenheer, P., Sontag, E.D.: A Petri net approach to the study of persistence in chemical reaction networks. Math. Biosci. 210, 598–618 (2007)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Banaji, M., Craciun, G.: Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements. Commun. Math. Sci. 7(4), 867–900 (2009)MathSciNetMATHGoogle Scholar
  9. 9.
    Hirsch, M.W., Smith, H.: Monotone Dynamical Systems. In: Handbook of Differential Equations: Ordinary Differential Equations, vol. II, pp. 239–357. Elsevier B. V., Amsterdam (2005)Google Scholar
  10. 10.
    Smith, H.: Monotone Dynamical Systems: An introduction to the theory of competitive and cooperative systems. American Mathematical Society (1995)Google Scholar
  11. 11.
    Angeli, D., De Leenheer, P., Sontag, E.D.: Graph-theoretic characterizations of monotonicity of chemical reaction networks in reaction coordinates. J. Math. Biol. 61(4), 581–616 (2010)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Banaji, M.: Monotonicity in chemical reaction systems. Dyn. Syst. 24(1), 1–30 (2009)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks: I. The injectivity property. SIAM J. Appl. Math. 65(5), 1526–1546 (2005)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Banaji, M., Donnell, P., Baigent, S.: P matrix properties, injectivity and stability in chemical reaction systems. SIAM J. Appl. Math. 67(6), 1523–1547 (2007)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    De Leenheer, P., Angeli, D., Sontag, E.D.: Monotone chemical reaction networks. J. Math. Chem. 41(3), 295–314 (2007)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Banaji, M., Baigent, S.: Electron transfer networks. J. Math. Chem. 43(4) (2008)Google Scholar
  17. 17.
    David, R., Alla, H.: Autonomous and Timed Continous Petri Nets. In: Rozenberg, G. (ed.) APN 1993. LNCS, vol. 674, pp. 71–90. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  18. 18.
    Bause, F., Kritzinger, P.S.: Stochastic Petri nets, 2nd edn., Vieweg (2002)Google Scholar
  19. 19.
    Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks: Extensions to entrapped species models. IEE Proc. Syst. Biol. 153(4), 179–186 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Berman, A., Plemmons, R.: Nonnegative matrices in the mathematical sciences. Academic Press, New York (1979)MATHGoogle Scholar
  21. 21.
    Craciun, G., Tang, Y., Feinberg, M.: Understanding bistability in complex enzyme-driven reaction networks. Proc. Natl. Acad. Sci. USA 103(23), 8697–8702 (2006)CrossRefGoogle Scholar
  22. 22.
    Banaji, M., Angeli, D.: Convergence in strongly monotone systems with an increasing first integral. SIAM J. Math. Anal. 42(1), 334–353 (2010)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Gouzé, J.-L.: Positive and negative circuits in dynamical systems. J. Biol. Sys. 6, 11–15 (1998)MATHCrossRefGoogle Scholar
  24. 24.
    Soulé, C.: Graphic requirements for multistationarity. Complexus 1, 123–133 (2003)CrossRefGoogle Scholar
  25. 25.
    Kaufman, M., Soulé, C., Thomas, R.: A new necessary condition on interaction graphs for multistationarity. J. Theor. Biol. 248(4), 675–685 (2007)CrossRefGoogle Scholar
  26. 26.
    Angeli, D., Hirsch, M.W., Sontag, E.: Attractors in coherent systems of differential equations. J. Diff. Eq. 246, 3058–3076 (2009)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Banaji, M.: Graph-theoretic conditions for injectivity of functions on rectangular domains. J. Math. Anal. Appl. 370, 302–311 (2010)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Jiang, J.F., Yu, S.X.: Stable cycles for attractors of strongly monotone discrete-time dynamical systems. J. Math. Anal. Appl. 202, 349–362 (1996)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Murad Banaji
    • 1
  1. 1.Department of MathematicsUniversity of PortsmouthPortsmouthUK

Personalised recommendations