Life Cycle Engineering in Preliminary Aircraft Design

  • Katharina Franz
  • Ralf Hörnschemeyer
  • Arthur Ewert
  • Martina Fromhold-Eisebith
  • Markus Große Böckmann
  • Robert Schmitt
  • Katja Petzoldt
  • Christoph Schneider
  • Jan Erik Heller
  • Jörg Feldhusen
  • Kerstin Büker
  • Johannes Reichmuth

Abstract

In preliminary aircraft design, the assessment of aircraft life cycle is mainly focused either on life cycle costs, or on economic and environmental analysis of certain life cycle phases. This paper presents an interdisciplinary approach for life cycle engineering during preliminary aircraft design enabling the evaluation of costs and environmental impact of the entire aircraft life cycle. The developed sustainability analysis modules are integrated in a platform together with an aircraft design suite. This allows for feeding back economic, ecological and social impact into the aircraft design synthesis, hence enabling future optimization of aircraft designs for sustainability.

Keywords

Aircraft Life Cycle Engineering Preliminary Aircraft Design Sustainability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Johnson, V.S.: Minimizing Life Cycle Cost for Subsonic Commercial Aircraft. Journal of Aircraft 27(2), 139–145 (1990)CrossRefGoogle Scholar
  3. 3.
    Raymer, D.P.: Aircraft Design: A Conceptual Approach, 4th edn. American Institute of Aeronautics and Astronautics, Reston (2006)Google Scholar
  4. 4.
    Roskam, J.: Airplane Design Part VIII: Airplane Cost Estimation: Design. Roskam Aviation and Engineering Corporation, Ottawa, Kansas (1990)Google Scholar
  5. 5.
    Antoine, N., Kroo, I.: A Framework for Aircraft Conceptual Design and Environmental Performance Studies. AIAA Journal 43(10), 2100–2109 (2005)CrossRefGoogle Scholar
  6. 6.
    Krasowski, H.: Life Cycle Engineering. Environmental Management Accounting: Informational and Institutional Developments 9(2), 153–157 (2004)CrossRefGoogle Scholar
  7. 7.
    Knudsen, F.: Defining Sustainability in the Aviation Sector. EUROCONTROL Experimental Centre. Atlantic House, Imperial Way, Reading, Berkshire (2004)Google Scholar
  8. 8.
    Airbus: Flying smart, thinking big, Global market forecast 2009-2028, Blagnac Cedex (2009)Google Scholar
  9. 9.
    Doganis, R.: Flying off course: the economics of international airlines, 3rd edn. Routledge, London (2002)Google Scholar
  10. 10.
    ICAO: Annex 14, International Standards and Recommended Practices Part I – Aerodromes, Montreal (2004)Google Scholar
  11. 11.
    van Heerden, D.-J., Curran, R.: Value Extraction from End-of-Life Aircraft. In: Encyclopedia of Aerospace Engineering. Wiley (2011)Google Scholar
  12. 12.
    Lammering, T., Anton, E., Risse, K., Franz, K., Hoernschemeyer, R.: Influence of Off-Design performance on the design of aircraft with laminar flow technology. In: AIAA Aviation Technology, Integration, and Operations (ATIO), Virginia Beach, AIAA-2011-7017 (2011)Google Scholar
  13. 13.
    Thokala, P.: Life Cycle Cost Modelling as an Aircraft Design Decision Support Tool. Ph.D. dissertation, University of Southampton (2009)Google Scholar
  14. 14.
    Castagne, S., Curran, R., Rothwell, A., Price, M., Benard, E., Raghunathan, S.: A generic tool for cost estimating in aircraft design. Research in Engineering Design 18(4), 149–162 (2008)CrossRefGoogle Scholar
  15. 15.
    Harris, F.D.: An Economic Model of U.S. Airline Operating Expenses. In: NASA/CR-2005-213476, NASA Ames Research Center, Moffet Field, CA (2005)Google Scholar
  16. 16.
    Rose, C.M.: Design for Environment: A Method for Formulating Product End-of-Life Strategies. Ph.D. dissertation, Stanford University (2000)Google Scholar
  17. 17.
    Fassbender-Wynands, E.: Umweltorientierte Lebenszyklusrechnung. Instrument zur Unterstützung des Umweltkostenmanagements, DUV, Wiesbaden (2001)Google Scholar
  18. 18.
    Deutsches Institut für Normung e.V.: DIN EN ISO 14040, Umweltmanagement – Ökobilanz – Grundsätze und Rahmenbedingungen (ISO 14040:2006). Beuth Verlag GmbH, Berlin (2006)Google Scholar
  19. 19.
    Lammering, T., Anton, E., Risse, K., Franz, K.: Impact of Systems Integration on Fuel Efficiency in Preliminary Aircraft Design. In: 3rd International Workshop on Aircraft System Technologies, pp. 171–180. Shaker Verlag (2011)Google Scholar
  20. 20.
    Anton, E., Lammering, T., Henke, R.: A comparative analysis of operations towards fuel efficiency in civil aviation. In: RAeS Aerodynamics Conference 2010, Applied Aerodynamics: Capabilities and Future Requirements, Bristol (2010)Google Scholar
  21. 21.
    Günther, E.: Ökologieorientiertes Management – Um(weltorientiert) Denken in der BWL. UTB-Verlag, Stuttgart (2008)Google Scholar
  22. 22.
    Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., van Dorland, R.: Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York (2007)Google Scholar
  23. 23.
    Frischknecht, R., Steiner, R., Jungbluth, N.: Methode der ökologischen Knappheit – Ökofaktoren 2006: Methode für die Wirkungsabschätzung in Ökobilanzen, Bundesamt für Umwelt BAFU, Bern (2009)Google Scholar
  24. 24.
    Tschandl, M., Posch, A.: Integriertes Umweltcontrolling. Gabler Verlag, Wiesbaden (2003)Google Scholar
  25. 25.
    Sausen, R., Isaksen, I., Grewe, V., Haugustlaine, D., Lee, D.S., Myhre, G., Köhler, M.O., Pitari, G., Schumann, U., Stordal, F., Zerefos, C.: Aviation radiative forcing in 2000: An update on IPCC (1999). Meteorologische Zeitschrift 14, 555–561 (2005)CrossRefGoogle Scholar
  26. 26.
    Lee, D.S., Pitari, G., Grewe, V., Gierens, K., Penner, J.E., Petzold, A., Prather, M.J., Schumann, U., Bais, A., Berntsen, T., Iachetti, D., Lim, L.L., Sausen, R.: Transport impacts on atmosphere and climate: Aviation. In: Atmospheric Environment, pp. 4678–4734 (2010)Google Scholar
  27. 27.
    Shine, K.P., Berntsen, T., Fuglestvedt, J.S., Stuber, N., Bieltvedt Skeie, R.: Comparing the climate effect of emissions of short and long lived climate agents. Phil. Trans. R. Soc. A 365, 1903–1914 (2007)CrossRefGoogle Scholar
  28. 28.
    Fuglestvedt, J.S., Shine, K., Cook, J., Berntsen, T., Lee, D., Stenke, A., Bieltvedt Skeie, R., Guus Velders, G., Waitz, I.: Transport Impacts on Atmosphere and Climate: Metrics. Atmospheric Environment 44, 4648–4677 (2010)CrossRefGoogle Scholar
  29. 29.
    Myhre, G., Shine, K.P., Rädel, G., Gauss, M., Isaksen, I.S.A., Tang, Q., Prather, M.J., Williams, J.E., van Velthoven, J.E., Dessens, O., Koffi, B., Szopa, S., Hoor, S., Grewe, V., Borken-Kleefeld, J., Berntsen, T.K., Fuglestvedt, J.S.: Radiative forcing due to changes in ozone and methane caused by the transport sector. Atmospheric Environment 45, 387–394 (2011)CrossRefGoogle Scholar
  30. 30.
    Group 8: Other mobile sources and machinery. In: Sully, J., Hill, N. (eds.) Joint EMEP/CORINAIR Atmospheric Emission Inventory Guidebook, 3rd edn. European Environment Agency, Copenhagen (2003)Google Scholar
  31. 31.
    Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mho, K., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., Joseph, D.: The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77, 437–471 (1996)CrossRefGoogle Scholar
  32. 32.
    Marais, K., Lukachko, S.P., Jun, M., Mahashabde, A., Waitz, I.A.: Assessing the impact of aviation on climate. Meteorologische Zeitschrift 17(2), 157–172 (2008)CrossRefGoogle Scholar
  33. 33.
    Hunkeler, D.: Societal LCA Methodology and Case Study. Int. J. LCA 11(6), 371–382 (2006)CrossRefGoogle Scholar
  34. 34.
    Dreyer, L.C., Hauschild, M.Z., Schierbeck, J.: A Framework for Social Life Cycle Impact Assessment. Int. J. LCA 11(2), 88–97 (2006)CrossRefGoogle Scholar
  35. 35.
    Janić, M.: The sustainability of air transportation, A quantitative analysis and assessment, Ashgate, Aldershot (2007)Google Scholar
  36. 36.
    Saling, P., Kicherer, A., Dittrich-Kriimer, B., Wittlinger, R., Zombik, W., Schmidt, I., Schrott, W., Schmidt, S.: Eco-efficiency Analysis by BASF: The Method. Int. J. LCA 7(4), 203–218 (2002)CrossRefGoogle Scholar
  37. 37.
    Harsche, M., Arndt, A., Braun, T., Eichinger, A., Pansch, H., Wagner, C.: Katalytische volks- und regional-wirtschaftliche Effekte des Luftverkehrs in Deutschland. European Center for Aviation Development, Darmstadt (2008)Google Scholar
  38. 38.
    Bowen, J.: The economic geography of air transportation. Space, time, and the freedom of the sky. Routledge, London (2010)Google Scholar
  39. 39.
    Maibach, M., Schreyer, C., Sutter, D., van Essen, H.P., Boon, B.H., Smokers, R., Schroten, A., Doll, C., Pawlowska, B., Bak, M.: Handbook on estimation of external costs in the transport sector. In: Internalization Measures and Policies for all external Cost of Transport (IMPACT) Delft (2008)Google Scholar
  40. 40.
    Franz, K., Hoernschemeyer, R., Große Boeckmann, M., Schmitt, R., Pollmanns, J., Feldhusen, J., Bueker, K., Reichmuth, J., Petzoldt, K., Sauter, T., Schneider, C., Ewert, A., Fromhold-Eisebith, M.: A methodical approach to assess the aircraft life cycle. In: 2nd International Air Transport and Operations Symposium, Delft (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Katharina Franz
    • 1
  • Ralf Hörnschemeyer
    • 1
  • Arthur Ewert
    • 2
  • Martina Fromhold-Eisebith
    • 2
  • Markus Große Böckmann
    • 3
  • Robert Schmitt
    • 3
  • Katja Petzoldt
    • 2
  • Christoph Schneider
    • 2
  • Jan Erik Heller
    • 4
  • Jörg Feldhusen
    • 4
  • Kerstin Büker
    • 5
  • Johannes Reichmuth
    • 5
  1. 1.Institute of Aeronautics and Astronautics (ILR)RWTH Aachen UniversityAachenGermany
  2. 2.Department of GeographyRWTH Aachen UniversityAachenGermany
  3. 3.Laboratory for Machine Tools and Production Engineering (WZL)RWTH Aachen UniversityAachenGermany
  4. 4.Institute for Engineering Design (ikt)RWTH Aachen UniversityAachenGermany
  5. 5.Institute of Transport ScienceRWTH Aachen UniversityAachenGermany

Personalised recommendations