Strategic Decision Making for End-of-Life Management of Fuel Cells

  • E. I. Wright
  • S. Rahimifard
Conference paper


Fuel cells offer attractive possibilities for efficient electricity generation across many applications. Within the context of Extended Producer Responsibility legislation and increasing concerns regarding material scarcity and waste, it is important that preparation for end-of-life management of the technology is made, prior to mass commercialization. Using a case study approach, life cycle environmental impact assessment, cost analysis and evaluation of legislative requirements are shown to support strategic development of end-of-life strategies for fuel cells. The findings highlight how the early identification of priorities for recycling of high impact, high value materials may help to avoid future detrimental impacts at end-of-life.


Fuel cells End-of-life management Recycling Extended producer responsibility Product life cycle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    EG&G Technical Services Inc.: Fuel Cell Handbook, 7th edn. U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, West Virginia (2004)Google Scholar
  2. 2.
    U.S. Department of Energy: Comparison of Fuel Cell Technologies (2011),
  3. 3.
    Acres, G.J.K.: Recent advances in fuel cell technology and its application. Journal of Power Sources 100, 60–66 (2001)CrossRefGoogle Scholar
  4. 4.
    Hellman, H.L., van den Hoed, R.: Characterising fuel cell technology: Challenges of the commercialization stage. International Journal of Hydrogen Energy 32, 305–351 (2007)CrossRefGoogle Scholar
  5. 5.
    FuelCellToday: The Fuel Cell Today Industry Review 2011 (2011),
  6. 6.
    Bauen, A., Hart, D.: Assessment of the environmental benefits of transport and stationary fuel cells. Journal of Power Sources 86, 482–492 (2000)CrossRefGoogle Scholar
  7. 7.
    Graedel, T.E., Allenby, B.R.: Industrial Ecology, 1st edn. Prentice-Hall, New Jersey (1995)Google Scholar
  8. 8.
    Maxwell, van der Vorst: Developing sustainable products and services. Journal of Cleaner Production 11(8), 883–895 (2003)CrossRefGoogle Scholar
  9. 9.
    European Parliament and Council: Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on end-of life vehicles. Official Journal of the European Union L 269, 34–43 (2000)Google Scholar
  10. 10.
    European Parliament and Council: Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Official Journal of the European Union L 37, 24–39 (2003) Google Scholar
  11. 11.
    Harper, E., Graedel, T.E.: Industrial ecology: a teenager’s progress. Technology in Society 26(2-3), 433–445 (2004)CrossRefGoogle Scholar
  12. 12.
    Wright, E.: End-of-life management of Solid Oxide Fuel Cells. PhD Thesis, Loughborough University, UK (2011)Google Scholar
  13. 13.
    Van den Bossche, P., Vergels, F., Van Mierlo, J., Matheys, J., Van Autenboer, W.: SUBAT: An assessment of sustainable battery technology. Journal of Power Sources 162, 913–919 (2006)CrossRefGoogle Scholar
  14. 14.
    Wright, E.I., Rahimifard, S., Clegg, A.J.: Impacts of environmental product legislation on solid oxide fuel cells. Journal of Power Sources 190(2), 362–371 (2009)CrossRefGoogle Scholar
  15. 15.
    Lindhqvist, T.: Extended Producer Responsibility in Cleaner Production. Policy Principle to Promote Environmental Improvements of Product Systems. PhD Thesis, Lund University, The Netherlands (2000)Google Scholar
  16. 16.
    Handley, C., Brandon, N.P., van der Vorst, R.: Impact of the European Union waste directive on end-of-life options for polymer electrolyte fuel cells. Journal of Power Sources 106, 344–352 (2002)CrossRefGoogle Scholar
  17. 17.
    Zhao, J., He, X., Tian, J., Wan, C., Jiang, C.: Reclaim/recycle of Pt/C catalysts for PEMFC. Energy Conversion and Management 48(2), 450–453 (2007)CrossRefGoogle Scholar
  18. 18.
    Grot, S., Grot, W., Martin, K.E., Tyler, R., Benjamin, T.: Platinum recycling technology development. U.S. Department of Energy (2008),
  19. 19.
    Xu, F., Mu, S., Pan, M.: Recycling of membrane electrode assembly of PEMFC by acid processing. International Journal of Hydrogen Energy 35(7), 2976–2979 (2010)CrossRefGoogle Scholar
  20. 20.
    Singhal, S.C.: Solid oxide fuel cells for stationary, mobile and military applications. Solid State Ionics 153, 405–410 (2002)CrossRefGoogle Scholar
  21. 21.
    Karakoussis, V., Brandon, N.P., Leach, M., van der Vorst, R.: The environmental impact of manufacturing planar and tubular solid oxide fuel cells. Journal of Power Sources 101, 10–26 (2001)CrossRefGoogle Scholar
  22. 22.
    Environment Agency: What is a Hazardous Waste? A guide to the Hazardous Waste Regulations and the List of Waste Regulations in England and Wales. Environment Agency, Bristol (2008)Google Scholar
  23. 23.
    Baumann, H., Tillman, A.-M.: The Hitch Hiker’s Guide to LCA. Studentlitteratur, Lund (2004)Google Scholar
  24. 24.
    ISO: ISO 14040:2006 Environmental management – Life cycle assessment – Principles and framework, International Standards Organisation: Switzerland (2006)Google Scholar
  25. 25.
    PE International GmbH: GaBi 4: Software and data base for Life Cycle Engineering (2007)Google Scholar
  26. 26.
    Ecoinvent Centre: Ecoinvent data v2.0. Ecoinvent reports No.1-25, Swiss Centre for Life Cycle Inventories, Dübendorf (2007)Google Scholar
  27. 27.
    Guinée, J.B., Gorrée, M., Heijungs, R., et al.: Handbook on life cycle assessment. Operational guide to the ISO standards. Kluwer Ac. Publishers, Dordrecht (2002)Google Scholar
  28. 28.
  29. 29.
    Thijssen, J.: Market Impacts of Rare Earth Element Use in Solid Oxide Fuel Cells. National Energy Technology Laboratory. Contract number: DE-FE0004002 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • E. I. Wright
    • 1
  • S. Rahimifard
    • 1
  1. 1.Centre for Sustainable Manufacturing and Reuse/Recycling Technologies (SMART), Wolfson School of Mechanical and Manufacturing EngineeringLoughborough UniversityLoughboroughUK

Personalised recommendations