Tracking the Evolution of Cooperation in Complex Networked Populations

  • Flávio L. Pinheiro
  • Francisco C. Santos
  • Jorge M. Pacheco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7246)

Abstract

Social networks affect in such a fundamental way the dynamics of the population they support that the global, population-wide behavior that one observes often bears no relation to the agent processes it stems from. Up to now, linking the global networked dynamics to such agent mechanisms has remained elusive. Here we define an observable dynamic and use it to track the self-organization of cooperators when co-evolving with defectors in networked populations interacting via a Prisoner’s Dilemma. Computations on homogeneous networks evolve towards the coexistence between cooperator and defector agents, while computations in heterogeneous networks lead to the coordination between them. We show how the global dynamics co-evolves with the motifs of cooperator agents in the population, the overall emergence of cooperation depending sensitively on this co-evolution.

Keywords

Complex Networks Self-Organization Cooperation Evolutionary Game Theory Evolutionary Dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adar, E., Huberman, B.: Free riding on gnutella. First Monday 5(10-2) (2000)Google Scholar
  2. 2.
    Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communications Magazine 40(8), 102–114 (2002)CrossRefGoogle Scholar
  3. 3.
    Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proceedings of the National Academy of Sciences 97, 11149–11152 (2000)CrossRefGoogle Scholar
  4. 4.
    Axelrod, R.: The Evolution of Cooperation. Penguin Books, Harmondsworth (1989)Google Scholar
  5. 5.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical processes in complex networks. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  7. 7.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial systems, vol. (1). Oxford University Press, USA (1999)MATHGoogle Scholar
  8. 8.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Inspiration for optimization from social insect behaviour. Nature 406(6791), 39–42 (2000)CrossRefGoogle Scholar
  9. 9.
    Borgers, T., Sarin, R.: Learning through reinforcement and replicator dynamics. Journal of Economic Theory 77(1), 1–14 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Centola, D.: The spread of behavior in an online social network experiment. Science 329, 1194 (2010)CrossRefGoogle Scholar
  11. 11.
    Christakis, N.A., Fowler, J.H.: The collective dynamics of smoking in a large social network. New England Journal of Medicine 358(21), 2249–2258 (2008)CrossRefGoogle Scholar
  12. 12.
    Dorogovtsev, S.N.: Lectures on Complex Networks. Oxford University Press, USA (2010)MATHCrossRefGoogle Scholar
  13. 13.
    Fowler, J.H., Christakis, N.A.: Cooperative behavior cascades in human social networks. Proceedings of the National Academy of Sciences 107(12), 5334–5338 (2010)CrossRefGoogle Scholar
  14. 14.
    Gómez-Gardeñes, J., Campillo, M., Floría, L.M., Moreno, Y.: Dynamical organization of cooperation in complex topologies. Physical Review Letters 98(10), 108103 (2007)CrossRefGoogle Scholar
  15. 15.
    Granovetter, M.: The strength of weak ties. American Journal of Sociolgy 78, 1360 (1973)CrossRefGoogle Scholar
  16. 16.
    Hauert, C.: Effects of space in 2x2 games. International Journal Bifurcation Chaos 12, 1531–1548 (2002)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Hofbauer, J., Sigmund, K.: Evolutionary games and population dynamics. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  18. 18.
    Johnson, D., Maltz, D., Broch, J., et al.: Dsr: The dynamic source routing protocol for multi-hop wireless ad hoc networks. Ad Hoc Networking 5, 139–172 (2001)Google Scholar
  19. 19.
    van Kampen, N.: Stochastic processes in physics and chemistry. North-Holland (2007)Google Scholar
  20. 20.
    Kollock, P.: Social dilemmas: The anatomy of cooperation. Annual Review of Sociology 24, 183–214 (1998)CrossRefGoogle Scholar
  21. 21.
    Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., Alstyne, M.V.: Computational social science. Science 323(5915), 721–723 (2009)CrossRefGoogle Scholar
  22. 22.
    Lloyd, A.L., May, R.M.: How viruses spread among computers and people. Science 292, 1316–1317 (2001)CrossRefGoogle Scholar
  23. 23.
    Nakamaru, M., Matsuda, H., Iwasa, Y.: The evolution of cooperation in a lattice-structured population. Journal of Theoretical Biology 184(1), 65–81 (1997)CrossRefGoogle Scholar
  24. 24.
    Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)CrossRefGoogle Scholar
  25. 25.
    Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M.A.: A simple rule for the evolution of cooperation on graphs and social networks. Nature 441(7092), 502–505 (2006)CrossRefGoogle Scholar
  26. 26.
    Onnela, J.P., Reed-Tsochas, F.: Spontaneous emergence of social influence in online systems. Proceedings of the National Academy of Sciences 107(43), 18375–18380 (2010)CrossRefGoogle Scholar
  27. 27.
    Pacheco, J.M., Pinheiro, F.L., Santos, F.C.: Population structure induces a symmetry breaking favoring the emergence of cooperation. PLoS Computational Biology 5(12), e1000596 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Pacheco, J.M., Santos, F.C., Souza, M.O., Skyrms, B.: Evolutionary dynamics of collective action in n-person stag hunt dilemmas. Proceedings of the Royal Society B 276(1655), 315–321 (2009)CrossRefGoogle Scholar
  29. 29.
    Perkins, C., Royer, E.: Ad-hoc on-demand distance vector routing. In: Second IEEE Workshop on Mobile Computing Systems and Applications, WMCSA 1999, pp. 90–100 (1999)Google Scholar
  30. 30.
    Ripeanu, M.: Peer-to-peer architecture case study: Gnutella network. In: Proceedings of First International Conference on Peer-to-Peer Computing, pp. 99–100 (2001)Google Scholar
  31. 31.
    Santos, F.C., Pacheco, J.M.: Scale-free networks provide a unifying framework for the emergence of cooperation. Physical Review Letters 95(9), 98104 (2005)CrossRefGoogle Scholar
  32. 32.
    Santos, F.C., Pacheco, J.M., Lenaerts, T.: Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proceedings of the National Academy of Sciences 103(9), 3490–3494 (2006)CrossRefGoogle Scholar
  33. 33.
    Santos, F.C., Rodrigues, J.F., Pacheco, J.M.: Epidemic spreading and cooperation dynamics on homogeneous small-world networks. Physical Review E 72(5), 56128 (2005)CrossRefGoogle Scholar
  34. 34.
    Santos, F., Pacheco, J.: Risk of collective failure provides an escape from the tragedy of the commons. Proceedings of the National Academy of Sciences 108(26), 10421 (2011)CrossRefGoogle Scholar
  35. 35.
    Sigmund, K.: The Calculus of Selfishness. Princeton Series in Theoretical and Computational Biology. Princeton University Press (2010)Google Scholar
  36. 36.
    Sutton, R., Barto, A.: Reinforcement learning: An introduction, vol. 28. Cambridge University Press, Cambridge (1998)Google Scholar
  37. 37.
    Szabó, G., Fáth, G.: Evolutionary games on graphs. Physics Reports 446(4-6), 97–216 (2007)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Taylor, P.D., Day, T., Wild, G.: Evolution of cooperation in a finite homogeneous graph. Nature 447, 469–472 (2007)CrossRefGoogle Scholar
  39. 39.
    Traulsen, A., Hauert, C.: Stochastic evolutionary game dynamics, vol. II. Wiley-VCH (2009)Google Scholar
  40. 40.
    Traulsen, A., Pacheco, J.M., Nowak, M.A.: Stochastic dynamics of invasion and fixation. Physical Review E 74(1 Pt 1), 11909 (2006)CrossRefGoogle Scholar
  41. 41.
    Van Segbroeck, S., De Jong, S., Nowé, A., Santos, F., Lenaerts, T.: Learning to coordinate in complex networks. Adaptive Behavior 18(5), 416 (2010)CrossRefGoogle Scholar
  42. 42.
    Watts, D.J.: A twenty-first century science. Nature 445(7127), 489 (2007)CrossRefGoogle Scholar
  43. 43.
    Wooldridge, M., Jennings, N.: Intelligent agents: Theory and practice. Knowledge Engineering Review 10(2), 115–152 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Flávio L. Pinheiro
    • 1
  • Francisco C. Santos
    • 1
    • 2
  • Jorge M. Pacheco
    • 1
    • 3
  1. 1.Instituto para a Investigacao InterdisciplinarATP-Group, CMAFLisboa CodexPortugal
  2. 2.Departamento de Engenharia Informática, Instituto Superior TécnicoUniversidade Técnica de LisboaLisboaPortugal
  3. 3.Departamento de Matemática e AplicaçõesUniversidade do MinhoBragaPortugal

Personalised recommendations