Live Geoinformation with Standardized Geoprocessing Services

  • Theodor FoersterEmail author
  • Bastian Baranski
  • Harald Borsutzky
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


To realize live geoinformation, which is about providing information as soon as it is available, new approaches for instant geoprocessing and efficient resource utilization are required. Currently, such geoprocessing on the web is handled sequentially instead. This article describes a new approach by processing geodata streams and thereby enabling a continuous processing for improved resource utilization rates. In particular, this work applies HTTP Live Streaming for example of standardized geoprocessing services. The approach is evaluated for processing a large volume datasets of OpenStreetMap data. The presented implementation is based on Free and Open Source software.


Live geoinformation Geoprocessing HTTP live streaming Web processing service 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The presented work has been supported by Raphael Rupprecht from the Institute for Geoinformatics. We acknowledge the various comments from Bastian Schäffer and input from the Geoprocessing Community of 52°North Open Source initiative. Finally, we are thankful for the valuable comments of the anonymous reviewers.


  1. Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004). Web Services (1st ed.). Springer Verlag.Google Scholar
  2. Schulzrinne, H., Casner, S., Frederick, R., & Jacobson, V. (1996). RTP: A Transport Protocol for Real-Time Applications (Standards track No. RFC 1889) (p. 74). IETF.Google Scholar
  3. Baranski, B. (2008). Grid Computing Enabled Web Processing Service. In E. Pebesma, M. Bishr, & T. Bartoschek (Eds.), Proceedings of the 6th Geographic Information Days, IfGI prints (Vol. 32, pp. 243-256). Presented at the GI-days 2008, Muenster, Germany: Institute for Geoinformatics. Retrieved from
  4. Baranski, B., Foerster, T., Schäffer, B., & Lange, K. (2011). Matching INSPIRE Quality of Service Requirements with Hybrid Clouds. Transactions in GIS, 15(s1), 125-142. doi: 10.1111/j.1467-9671.2011.01265.x
  5. Bertolotto, M., & Egenhofer, M. J. (2001). Progressive Transmission of Vector Map Data over the World Wide Web. Geoinformatica, 5(4), pp. 345-373.Google Scholar
  6. Brauner, J., Foerster, T., Schaeffer, B., & Baranski, B. (2009). Towards a Research Agenda for Geoprocessing Services. In J. Haunert, B. Kieler, & J. Milde (Eds.), 12th AGILE International Conference on Geographic Information Science. Presented at the AGILE 2009, Hanover, Germany: IKG, Leibniz University of Hanover. Retrieved from
  7. Conklin, G. J., Greenbaum, G. S., Lillevold, K. O., Lippman, A. F., & Reznik, Y. A. (2001). Video coding for streaming media delivery on the Internet. IEEE Transactions on Circuits and Systems for Video Technology, 11(3), 269-281. doi: 10.1109/76.911155.Google Scholar
  8. Craglia, M., Goodchild, M., Annoni, A., Camara, G., Gould, M., Kuhn, W., Mark, D. M., et al. (2008). Next-generation Digital Earth. International Journal of Spatial Data Infrastructure Research, 3, 146-167. doi: 10.2902/1725-0463.2008.03.art9.Google Scholar
  9. Di, L., Chen, A., Yang, W., & Zhao, P. (2003). The Integration of Grid Technology with OGC Web Services (OWS) in NWGISS for NASA EOS Data (pp. 24-27). Presented at the GGF8 & HPDC12 2003, Seattle, WA, USA: Science Press.Google Scholar
  10. Douglas, D. H., & Peucker, T. K. (1973). Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer, 10(2), pp. 112-122.Google Scholar
  11. Everding, T., Echterhoff, J., & Jirka, S. (2009). Event Processing in Sensor Webs. Geoinformatik 2009, ifgiPrints (Vol. 35, pp. 11-19). University of Münster.Google Scholar
  12. Fielding, R. T., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee, T. (1999). Hypertext Transfer Protocol (Standards track No. RFC 2616) (p. 176). IETF.Google Scholar
  13. Foerster, T., Schaeffer, B., Baranski, B., & Brauner, J. (2011). Geospatial Web Services for Distributed Processing - Applications and Scenarios. In P. Zhao & L. Di (Eds.), Geospatial Web Services: Advances in Information Interoperability (pp. 245-286). Hershey, PA: IGI Global.Google Scholar
  14. Friis-Christensen, A., Ostlander, N., Lutz, M., & Bernard, L. (2007). Designing Service Architectures for Distributed Geoprocessing: Challenges and Future Directions. Transactions in GIS, 11(6), 799-818. doi: 10.1111/j.1467-9671.2007.01075.x Google Scholar
  15. Gore, A. (1998). The digital earth: Understanding our planet in the 21st century. Australian surveyor, 43(2), 89–91.Google Scholar
  16. Grossner, K. E., Goodchild, M. F., & Clarke, K. C. (2008). Defining a Digital Earth System. Transactions in GIS, 12(1), 145-160. doi: 10.1111/j.1467-9671.2008.01090.x
  17. Haklay, M. (Muki), & Weber, P. (2008). OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Computing, 7(4), 12-18. doi: 10.1109/MPRV.2008.80.
  18. Lanig, S., Schilling, A., Stollberg, B., & Zipf, A. (2008). Towards Standards-based Processing of Digital Elevation Models for Grid Computing through Web Processing Service (WPS). ICCSA, Lecture Notes in Computer Science (Vol. 5073, pp. 191-203). Presented at the Computational Science and Its Applications - ICCSA 2008, Perugia, Italy: Springer Verlag. doi:
  19. Li, M., Claypool, M., Kinicki, R., & Nichols, J. (2005). Characteristics of streaming media stored on the Web. ACM Trans. Internet Technol., 5(4), 601–626. doi: Scholar
  20. May, W., & Pantos, R. (2011). HTTP Live Streaming (Internet Draft No. draft-pantos-http-live-streaming-06) (p. 24). Cupertino, CA: IETF.Google Scholar
  21. Müller, M., Bernard, L., & Brauner, J. (2010). Moving Code in Spatial Data Infrastructures - Web Service Based Deployment of Geoprocessing Algorithms. Transactions in GIS, 14, 101-118. doi: 10.1111/j.1467-9671.2010.01205.x
  22. Muthukrishnan, S. (2005). Data streams: Algorithms and applications. Now Publishers Inc.Google Scholar
  23. OGC. (2005). Web Feature Service Implementation Specification (Implementation specification No. OGC 04-094). Retrieved from
  24. OGC. (2007). OpenGIS Web Processing Service (OGC implementation specification No. OGC 05-007r7). Open Geospatial Consortium. Retrieved from
  25. Scholten, M., Klamma, R., & Kiehle, C. (2006). Evaluating performance in spatial data infrastructures for geoprocessing. IEEE Internet Computing, 10(5), pp. 34-41.Google Scholar
  26. van Oosterom, P. (2005). Variable-scale Topological Data Structures Suitable for Progressive Data Transfer: The GAP-face Tree and GAP-edge Forest. Cartography and Geographic Information Science, 32(4), pp. 331-346.Google Scholar
  27. Ying, F., Mooney, P., Padraig, C., & Winstanley, A. (2011). Selective progressive transmission of vector data. Presented at the GeoComputation 2011, London, UK.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Theodor Foerster
    • 1
    Email author
  • Bastian Baranski
    • 1
  • Harald Borsutzky
    • 1
  1. 1.Institute for GeoinformaticsUniversity of MuensterMunsterGermany

Personalised recommendations