Usability of Spatio-Temporal Uncertainty Visualisation Methods

  • Hansi Senaratne
  • Lydia Gerharz
  • Edzer Pebesma
  • Angela Schwering
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


The presented work helps users of spatio-temporal uncertainty visualisation methods to select suitable methods according to their data and requirements. For this purpose, an extensive web-based survey has been carried out to assess the usability of selected methods for users in different domains, such as GIS and spatial statistics. The results of the survey are used to incorporate a usability parameter in a categorisation design to characterise the uncertainty visualisation methods. This enables users to determine the uncertainty visualisation method(s) that are most suitable according to their domain of expertise. Finally, the categorisation design has been implemented and incorporated in a web-based tool as the Uncertainty Visualisation Selector. This web application can automatically recommend suitable uncertainty visualisation method(s) from user and data requirements.


Spatio-temporal uncertainty Geovisualisation Domain-specific usability Web application 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported in part by the European Commission through the FP7 research projects “Quality aware Visualisation for the Global Earth Observation System of Systems (GeoViQua)” (FP7 ENV 2010-1-265178) and “Uncertainty enabled Model Web (UncertWeb)” (FP7/2007-2013).


  1. Aerts JCJH, Clarke KC, Keuper AD. (2003). Testing Popular Visualization Techniques for Representing Model Uncertainty. Cartography and Geographic Information Science, 30(3), pp. 249-261.Google Scholar
  2. Agrawal S, Joshi PK, Shukla Y, Roy PS. (2003). SPOT Vegetation Multi Temporal Data for Classifying Vegetation in South Central Asia. Current Science, 84(11), pp. 1440-1448.Google Scholar
  3. Bertin J. (1983). Semiology of Graphics: Diagrams, Networks, Maps. (Translation by William J. Berg). The University of Wisconsin Press, Madison, WI, USA.Google Scholar
  4. Brewer CA, Hatchard GW, Harrower MA. (2003). ColorBrewer in Print: A Catalog of Color Schemes for Maps. Catography and Geographic Information Science, 30(1), pp. 5-32.Google Scholar
  5. Cliburn DC, Fedemma JJ, Miller JR, Slocum TA. (2002). Design and Evaluation of a Decision Support System in a Water Balance Application. Computer & Graphics, 26, pp. 931-949.Google Scholar
  6. Davis TJ, Keller CP. (1997). Modelling and Visualizing Multiple Spatial Uncertainties. Computers & Geosciences, 23(4), pp. 397-408.Google Scholar
  7. Dutton G. (1992). Handling Positional Uncertainty in Spatial Databases. In: Proceedings of the 5th International Symposium on Spatial Data Handling, Charleston, SC, USA. August 1992, pp. 460-469.Google Scholar
  8. Evans BJ. (1997). Dynamic Display of Spatial Data Reliability: Does it Benefit the Map User? Computers & Geosciences, 23, pp. 409-422.Google Scholar
  9. Falkner J, Timney J, GalbraithI B. (2001). Beginning JSP Web Development. Wrox Press Ltd. Birmingham, UK.Google Scholar
  10. Fisher P. (1993). Visualizing Uncertainty in Soil Maps by Animation. Cartographica, 30(2+3), pp. 20-27.Google Scholar
  11. Gerharz LE, Pebesma EJ. (2009). Usability of Interactive and Non-Interactive Visualisation of Uncertain Geospatial Information. In: Reinhardt, W., Krüger, A., Ehlers, M. (Eds.), Geoinformatik 2009 Konferenzband, Osnabrück, Germany. 31 March-1 April 2009. Pp. 223-230.Google Scholar
  12. Hengl T, Walvoort DJJ, Brown A. (2002). Pixel (PM) and Colour Mixture (CM): GIS Techniques for Visualisation of Fuzziness and Uncertainty of Natural Resource Inventories. In: Hunter, G. J., Lowell, K. (Eds.), Proceedings of the 5th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences (Accuracy 2002), Melbourne, Australia, Pp. 300-309.Google Scholar
  13. Hengl T. (2003). Visualisation of Uncertainty Using the HIS Colour Model: Computations with colours. In: Proceedings of the 7th International Conference on GeoComputation, Southampton, UK.8-10 September 2003, pp. 8-17.Google Scholar
  14. Heuvelink GBM, Brown JD, van Loon EE. (2007). A Probabilistic Framework for Representing and Simulating Uncertain Environmental Variables. International Journal of Geographical Information Science, 21(5), pp. 497-513.Google Scholar
  15. Kardos JD, Moore A, Benwell GL. (2003). Visualising Uncertainty in Spatially-Referenced Attribute Data Using Hierarchical Spatial Data Structures. In: Proceedings of the 7th International Conference on GeoComputation, Southhampton, UK. 8-10 September 2003.Google Scholar
  16. Longley PA, Goodchild MF, Maguire DJ, Rhind DW. (2005). Geographic Information Systems and Science (2nd edition). Wiley & Sons. West Sussex, UK.Google Scholar
  17. MacEachren AM. (1992). Visualising Uncertain Information. Cartographic Perspective, 13, pp. 10-19.Google Scholar
  18. MacEachren AM. (1995). How Maps Work: Representation, Visualization and Design. Guilford Press. New York, USA.Google Scholar
  19. MacEachren AM, Brewer CA, Pickle IW. (1998). Visualising Georeferenced Data: Representing Reliability of Health Statistics. Environment and Planning A, 30, pp. 1547-1561.Google Scholar
  20. MacEachren AM, Robinson A, Hopper S, Gardner S, Murray R, Gahegan M, Hetzler E. (2005). Visualizing Geospatial Information Uncertainty: What We Know and What We Need to Know. Cartography and Geographic Information Science, 32, pp. 139-160Google Scholar
  21. Marr D. (1982). Vision. W.H. Freeman and Company. New York, USA.Google Scholar
  22. Nielsen J. (1989). The Matters That Really Matter for Hypertext Usability. Proceedings of Hypertext 89. ACM Press. New York, USA, pp. 239-248.Google Scholar
  23. Nielsen J. (2002). The Usability Engineering Life Cycle. Computer, 25 (3), pp.12-22.Google Scholar
  24. Olston C, Mackinlay J. (2002). Visualizing Data with Bounded Uncertainty. In: Proceedings of the IEEE Symposium on Information Visualization, Boston, MA, USA. 28-29 October 2002, pp. 37-40.Google Scholar
  25. Ormsby T, Napoleon EJ, Burke R, Groessl C, Bowden L. (2010). Getting to Know ArcGIS Desktop (2nd edition). Esri Press. Redlands, USA.Google Scholar
  26. Pang AT. (2001). Visualizing Uncertainty in Geo-spatial Data. In: Proceedings of the Workshop on the Intersections between Geospatial Information and Information Technology, Arlington, TX, USA. October 2001.Google Scholar
  27. Pebesma EJ, de Jong K, Briggs D. (2007). Interactive Visualization of Uncertain Spatial and Spatio-temporal Data under Different Scenarios: An Air Quality Example. International Journal of Geographical Information Science, 21(5), pp. 515-527.Google Scholar
  28. Senaratne H, Gerharz L. (2011). An Assessment and Categorisation of Quantitative Uncertainty Visualisation Methods. The 14th AGILE International Conference on Geographic Information Science. 18.-21 April, Utrecht, Netherlands. Online available: Accessed on 20 Sep 2011.
  29. Van de Kassteele J, Velders GJM. (2006). Uncertainty Assessment of Local NO2 Concentrations Derived from Error-in-Variable External Drift Kriging and its Relationship to the 2010 Air Quality Standard. Atmospheric Environment, 40(14), pp. 2583-2595.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hansi Senaratne
    • 1
    • 2
  • Lydia Gerharz
    • 1
  • Edzer Pebesma
    • 1
    • 2
  • Angela Schwering
    • 1
  1. 1.Institute for GeoinformaticsUniversity of MuensterMunsterGermany
  2. 2.MunsterGermany

Personalised recommendations