Limiting Equilibrium of a Material With Load Dependent Strength Properties

Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 21)

Abstract

Solvability of static boundary-value problems within the framework of a model describing small strains in a material with load dependent strength properties, for example at tension and compression, is studied. A generalization of the static and kinematic theorems of the theory of limiting equilibrium is given. As an example of the application of the kinematic theorem, an upper estimate of the limit load and of the angle of departure of linear zone of the strain localization for the problem on discontinuity of a notched sample under the action of pressure on the edges of a notch is found. It is shown that logarithmic spirals serve as localization lines. With the help of two-sided estimates, an expression for the angle of natural slope of an ideal granular material is obtained. For the numerical solution of boundary-value problems, an iterative algorithm based on the finite-element approximation of a model is worked out. Results of computations which confirm the obtained estimating solutions are presented.

Keywords

Variational Inequality Granular Material Displacement Field Limit Load Localization Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Berdichevsky, V.L.: Variational Principles of Continuum Mechanics, vol 1: Fundamentals. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Berdichevsky, V.L.: Variational Principles of Continuum Mechanics, vol 2: Applications. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Bykovtsev, G.I., Ivlev, D.D.: Teoriya Plastichnosti (Plasticity Theory). Dal’nauka, Vladivostok (1998)Google Scholar
  4. 4.
    Cherepanov, G.P.: Mechanics of Brittle Fracture. McGraw-Hill, New York (1979)Google Scholar
  5. 5.
    Drucker, D.C., Prager, W.: Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 10(2), 157–165 (1952)Google Scholar
  6. 6.
    Ekeland, I., Temam, R.: Convex Analysis and Variational Problems, Studies in Mathematics and Its Applications, vol. 1. North-Holland Publishing Company, Amsterdam (1976)Google Scholar
  7. 7.
    Fialkov, A.S.: Uglegrafitovye Materialy (Carbon-Graphite Materials). Energiya, Moscow (1979)Google Scholar
  8. 8.
    Golovanov, A.I., Berezhnoi, D.V.: Metod Konechnykh Elementov v Mekhanike Deformiruemykh Tverdykh Tel (Finite-Element Method in Mechanics of Deformable Solids). DAS, Kazan (2001)Google Scholar
  9. 9.
    Gorunovich, S.B., Zlobin, V.S., Sadovskii, V.M.: Thermostressed state of the bottom section of the aluminum electrolytic section. Sib. J. Ind. Math. 5(2), 61–69 (2002)Google Scholar
  10. 10.
    Kamenyarzh, Y.A.: Predel’nyi Analiz Plasticheskikh Tel i Konstrukczii (Limiting Analysis of Plastic Bodies and Structures). Nauka, Moscow (1997)Google Scholar
  11. 11.
    Khludnev, A.M., Kovtunenko, V.A.: Analysis of Crack in Solids. WIT Press, Boston (1999)Google Scholar
  12. 12.
    Kolmogorov, A.N., Fomin, S.V.: Elements of the Theory of Functions and Functional Analysis, vol 1–2. Dover Publications Inc., Mineola (1999)Google Scholar
  13. 13.
    Kuzovatova, O.I., Sadovskii, V.M.: Modeling of the deformation localization in a medium with different strengths. J. Sib. Fed. Univ. Math. Phys. 1(3), 272–283 (2008)Google Scholar
  14. 14.
    Kuzovatova, O.I., Sadovsky, V.M.: Numerical investigation of the problem of cohesive running soils punching shear. Vestnik Sib. Gos. Aerokosm. Univ. 26(5), 36–40 (2009)Google Scholar
  15. 15.
    Magomedov, K.M., Kholodov, A.S.: Setochno-Kharakteristicheskie Chislennye Metody (Grid-Characteristic Numerical Methods). Nauka, Moscow (1988)Google Scholar
  16. 16.
    Marmer, E.N.: Uglegrafitovye Materialy (Carbon-Graphite Materials). Metallurgiya, Moscow (1973)Google Scholar
  17. 17.
    Morozov, N., Petrov, Y.: Dynamics of Fracture. Springer, Heidelberg (2000)Google Scholar
  18. 18.
    Mosolov, P.P., Myasnikov, V.P.: Variaczionnye Metody v Teorii Techenii Zhestko-Vyazko-Plasticheskikh Sred (Variational Methods in the Theory of Flows of Rigid-Viscoplastic Media). Izd. Mosk. Univ., Moscow (1971)Google Scholar
  19. 19.
    Mosolov, P.P., Myasnikov, V.P.: Mekhanika Zhestkoplasticheskikh Sred (Mechanics of Rigid-Plastic Media). Nauka, Moscow (1981)Google Scholar
  20. 20.
    Myasnikov, V.P., Sadovskii, V.M.: Variational principles of the theory of the limiting equilibrium of media with different strengths. J. Appl. Math. Mech. 68(3), 437–446 (2004)CrossRefGoogle Scholar
  21. 21.
    Richtmyer, R.: Principles of Advanced Mathematical Physics. Springer, New York (1978–1986)Google Scholar
  22. 22.
    Segerlind, L.J.: Applied Finite Element Analysis, 2nd edn. Wiley, New York (1984)Google Scholar
  23. 23.
    Sokolovskii, V.V.: Statics of Granular Media. Pergamon Press, Oxford (1965)Google Scholar
  24. 24.
    Temam, R.: Problémes Mathématiques en Plasticité. Gauthier-Villars, Paris (1983)Google Scholar
  25. 25.
    Vladimirov, V.S.: Generalized Functions in Mathematical Physics. Mir Publishers, Moscow (1979)Google Scholar
  26. 26.
    Washizu, K.: Variational Methods in Elasticity and Plasticity. Pergamon Press, Oxford (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.ICM SB RASKrasnoyarskRussia

Personalised recommendations