Advertisement

Tunneling Blasting Simulation for Digital Mine

  • Chao Wang
  • Yu Wu
  • Tingting Zhu
  • Hongbo Li
  • Mingliang Xu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7145)

Abstract

Tunneling blasting is a major component of digital mine simulation, with the high cost, dangerous and irreversible features of blasting, it is difficult to design tunneling blasting scheme in real world. The paper simulates tunneling blasting by combining blasting animation of computer graphics with mining empirical formulas. A connected voxel model is used to represent rocks and their failure mechanism. This simulation helps engineers test and adjust blasting scheme before real operation.

Keywords

Digital Mine Blasting Simulation Voxel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lu, X., Yin, H.: Definition, Connotations and Progress of Digital Mine. Coal Science and Technology 38(1), 48–52 (2010)Google Scholar
  2. 2.
    Fang, Z., Wang, L., He, Y.: DIMINE-based Research and Realization of True 3D Mining Method Design. Metal Mine 5(395), 129–130 (2009)Google Scholar
  3. 3.
    Reeves, W.T.: Particle System—a Technique for Modeling a Class of Fuzzy Objects. ACM Transactions on Graphics 2(2), 91–108 (1983)CrossRefGoogle Scholar
  4. 4.
    Neff, O., Fiume, E.: A Visual Model for Blast Wave and Fracture. In: Proceeding of Graphics Interface 1999, pp. 193–202 (1999)Google Scholar
  5. 5.
    Mazarak, O., Martins, C., Amanatides, J.: Animating Exploding Objects. In: Proceeding of Graphics Interface 1999, pp. 211–218 (1999)Google Scholar
  6. 6.
    Martins, C., Buchanan, J., Amanatides, J.: Animating Real-Time explosions. The Journal of Visualization and Computer Animation 13(2), 133–145 (2002)zbMATHCrossRefGoogle Scholar
  7. 7.
    Rami, N., Proctor, M.D.: Real Time Physically-Based Modeling and Simulation of Cratering and Fragmentation of Terrain. Simulation 83(12), 830–841 (2007)CrossRefGoogle Scholar
  8. 8.
    O’Brien, J.F., Hodgins, J.K.: Graphical Modeling and Animation of Brittle Fracture. In: Proceeding of ACM SIGGRAPH 1999, pp. 137–146 (1999)Google Scholar
  9. 9.
    O’Brien, J.F., Bargteil, A.W., Hodgins, J.K.: Graphical Modeling and Animation of Ductile Fractrue. In: Proceeding of ACM SIGGRAPH 2002, pp. 291–294 (2002)Google Scholar
  10. 10.
    Yngve, G.D., O’Brien, J.F., Hodgins, J.K.: Animating Explosions. In: Proceeding of ACM SIGGRAPH 2000, pp. 91–95 (2000)Google Scholar
  11. 11.
    Sewall, J., Galoppo, N., Tsankov, G., Lin, M.: Visual Simulation of Shockwaves. In: Proceeding of ACM SIGGRAPH 2008, pp. 19–28 (2008)Google Scholar
  12. 12.
    Cheng, K., Zhu, W., Wang, Q.: Geotechnical Excavation Engineering Blasting. Wuhan University of Technology Press (2008)Google Scholar
  13. 13.
    Lin, D.: Mining Blasting Engineering. Metallurgical Industry Press, Beijing (1993)Google Scholar
  14. 14.
    Tep∏ΓopeB, A.M.: Mining Handbook. Metallurgical Industry Press, Beijing (1954)Google Scholar
  15. 15.
    Liu, D., Yang, S.: Blasting Engineering Practical Handbook. Metallurgical Industry Press, Beijing (2004)Google Scholar
  16. 16.
    Baker, W.E.: Explosives in Air. University of Texas Press (1973)Google Scholar
  17. 17.
    Yang, X., Shi, S., Cheng, P.: Forecast and Simulation of Perk Overpressure of TNT Explosion Shock Wave in the Air. Blasting 25(1), 15–18 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chao Wang
    • 1
    • 2
  • Yu Wu
    • 1
  • Tingting Zhu
    • 2
  • Hongbo Li
    • 1
  • Mingliang Xu
    • 2
  1. 1.Institute of Web IntelligenceChongqing University of Posts and TelecommunicationsChongqingChina
  2. 2.State Key Lab of CAD&CGZhejiang UniversityHangzhouChina

Personalised recommendations