Modeling Infection with Multi-agent Dynamics

  • Wen Dong
  • Katherine Heller
  • Alex (Sandy) Pentland
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7227)

Abstract

Developing the ability to comprehensively study infections in small populations enables us to improve epidemic models and better advise individuals about potential risks to their health. We currently have a limited understanding of how infections spread within a small population because it has been difficult to closely track and infection within a complete community. This paper presents data closely tracking the spread of an infection centered on a student dormitory, collected by leveraging the residents’ use of cellular phones. This data is based on daily symptom surveys taken over a period of four months and proximity tracking through cellular phones. We demonstrate that using a Bayesian, discrete-time multi-agent model of infection to model the real-world symptom report and proximity tracking records can give us important insights about infections in small populations

Keywords

human dynamics living lab stochastic process multi-agent modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eubank, S., Guclu, H., Kumar, V., Marathe, M., Srinivasan, A., Toroczkai, Z., Wang, N.: Modelling disease outbreaks in realistic urban social networks. Nature 429, 180–184 (2004)CrossRefGoogle Scholar
  2. 2.
    Isella, L., Stehle, J., Barrat, A., Cattuto, C., Pinton, J., Van den Broeck, W.: What’s in a crowd? analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166–180 (2010)CrossRefGoogle Scholar
  3. 3.
    Salathe, M., Kazandjieva, M., Lee, J., Levis, P., Feldman, M., Jones, J.: A high-resolution human contact network for infectious disease transmission. Proc. Natl. Acad. Sci (USA) 107, 22020–22025 (2010)CrossRefGoogle Scholar
  4. 4.
    Hufnagel, L., Brockmann, D., Geisel, T.: Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. USA 101, 15124–15129 (2004)CrossRefGoogle Scholar
  5. 5.
    Stehle, J., Voirin, N., et al.: Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Medicine 9(1), 87 (2011)CrossRefGoogle Scholar
  6. 6.
    Dong, W., Lepri, B., Pentland, A.: Modeling the coevolution of behaviors and social relationships using mobile phone data. In: Proc ACM MUM (2011)Google Scholar
  7. 7.
    Dong, W., Heller, K., Pentland, A.: Modeling Infection with Multi-agent Dynamics. arXiv 1201.xxxx [cs.MA, cs.SI]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wen Dong
    • 1
  • Katherine Heller
    • 2
  • Alex (Sandy) Pentland
    • 1
  1. 1.MIT Media LaboratoryUSA
  2. 2.Department of Brain and Cognitive SciencesMITUSA

Personalised recommendations