Grasping and Control of Multi-Fingered Hands

  • Luigi Villani
  • Fanny Ficuciello
  • Vincenzo Lippiello
  • Gianluca Palli
  • Fabio Ruggiero
  • Bruno Siciliano
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 80)

Abstract

An important issue in controlling a multi-fingered robotic hand grasping an object is the evaluation of the minimal contact forces able to guarantee the stability of the grasp and its feasibility. This problem can be solved online if suitable sensing information is available. In detail, using finger tactile information and contact force measurements, an efficient algorithm is developed to compute the optimal contact forces, assuming that, during the execution of a manipulation task, both the position of the contact points on the object and the wrench to be balanced by the contact forces may change with time. Since manipulation systems can be redundant also if the single fingers are not –due to the presence of the additional degrees of freedom (DOFs) provided by the contact variables– suitable control strategies taking advantage of such redundancy are adopted, both for single and dual-hand manipulation tasks. Another goal pursued in DEXMART is the development of a human-like grasping approach inspired to neuroscience studies. In order to simplify the synthesis of a grasp, a configuration subspace based on few predominant postural synergies of the robotic hand is computed. This approach is evaluated at kinematic level, showing that power and precise grasps can be performed using up to the third predominant synergy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonelli, G.: Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic systems. IEEE Transactions on Robotics 25, 985–994 (2009)CrossRefGoogle Scholar
  2. 2.
    Berselli, G., Borghesan, G., Brandi, M., Melchiorri, C., Natale, C., Palli, G., Pirozzi, S., Vassura, G.: Integrated mechatronic design for a new generation of robotic hands. In: IFAC Symposium on Robot Control, Gifu (2009)Google Scholar
  3. 3.
    Berselli, G., Piccinini, M., Palli, G., Vassura, G.: Engineering design of fluid-filled soft covers for robotic contact interfaces: Guidelines, nonlinear modelling, and experimental validation. IEEE Transactions on Robotics 27, 436–449 (2011)CrossRefGoogle Scholar
  4. 4.
    Berselli, G., Piccinini, M., Vassura, G.: On designing structured soft covers for robotic limbs with predetermined compliance. In: ASME International Design Engineering Technical Conferences, Montréal (2010)Google Scholar
  5. 5.
    Berselli, G., Vassura, G.: Differentiated layer design to modify the compliance of soft pads for robotic limbs. In: IEEE International Conference on Robotics and Automation, Kobe (2009)Google Scholar
  6. 6.
    Biagiotti, L., Lotti, F., Melchiorri, C., Palli, G., Tiezzi, P., Vassura, G.: Development of UB Hand 3: Early results. In: IEEE International Conference on Robotics and Automation, Barcelona (2005)Google Scholar
  7. 7.
    Bicchi, A., Gabiccini, M., Santello, M.: Modelling natural and artificial hands with synergies. Philosophical Transactions of the Royal Society B: Biological Sciences 366, 3153–3161 (2011)CrossRefGoogle Scholar
  8. 8.
    Bicchi, A., Prattichizzo, D.: Manipulability of cooperative robots with unactuated joints and closed-chain mechanisms. IEEE Transactions on Robotics and Automation 16, 336–345 (2000)CrossRefGoogle Scholar
  9. 9.
    Borghesan, G., Palli, G., Melchiorri, C.: Design of tendon-driven robotic fingers: Modelling and control issues. In: IEEE International Conference on Robotics and Automation, Anchorage, AK (2010)Google Scholar
  10. 10.
    Brown, C., Asada, H.: Inter-finger coordination and postural synergies in robot hands via mechanical implementation of principal components analysis. In: IEEE/RSJ Interational Conference on Intelligent Robots and Systems, San Diego, CA (2007)Google Scholar
  11. 11.
    Buss, M., Hashimoto, H., Moore, J.B.: Dextrous hand frasping force optimization. IEEE Transactions on Robotics and Automation 12, 406–418 (1996)CrossRefGoogle Scholar
  12. 12.
    Buss, M., Faybusovich, L., Moore, J.B.: Dikin-type algorithms for dextrous grasping force optimization. International Journal of Robotics Research 17, 831–839 (1998)CrossRefGoogle Scholar
  13. 13.
    Ciocarlie, M., Allen, P.: Hand posture subspaces for dexterous robotic grasping. International Journal of Robotics Research 28, 851–867 (2009)CrossRefGoogle Scholar
  14. 14.
    Ciocarlie, M., Allen, P.: On-line interactive dexterous grasping. In: 6th International Conference on Haptics: Perception, Devices and Scenarios, Madrid (2008)Google Scholar
  15. 15.
    Ciocarlie, M., Goldfeder, C., Allen, P.: Dimensionality reduction for hand-independent dexterous robotic grasping. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego (2007)Google Scholar
  16. 16.
    Coelho, J., Grupen, R.: A control basis for learning multifingered grasps. Journal of Robotic Systems 14, 545–557 (1997)MATHCrossRefGoogle Scholar
  17. 17.
    Cutkosky, M.: On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Transactions on Robotics and Automation 5, 269–279 (1989)CrossRefGoogle Scholar
  18. 18.
    DEXMART Project website, http://www.dexmart.eu/
  19. 19.
    Faybusovich, L.: Dikin’s algorithm for matrix linear programming problems. In: Henry, J., Yvon, J.-P. (eds.) System Modelling and Optimization, pp. 237–247. Springer, New York (1994)CrossRefGoogle Scholar
  20. 20.
    Feix, T., Pawlik, R., Schmiedmayer, H., Romero, J., Kragic, D.: The generation of a comprehensive grasp taxonomy. In: Robotics: Science and Systems, Workshop on Understanding the Human Hand for Advancing Robotic Manipulation, Seattle, WA (2009)Google Scholar
  21. 21.
    Ficuciello, F., Palli, G., Melchiorri, C., Siciliano, B.: Experimental evaluation of postural synergies during reach to grasp with the UB Hand IV. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA (2011)Google Scholar
  22. 22.
    Gabiccini, M., Bicchi, A.: On the role of hand synergies in the optimal choice of grasping forces. In: Robotics: Science and Systems, Zaragoza (2010)Google Scholar
  23. 23.
    Geng, T., Lee, M., Hulse, M.: Transferring human grasping synergies to a robot. Mechatronics 284, 272–284 (2011)CrossRefGoogle Scholar
  24. 24.
    Gioioso, G., Salvietti, G., Malvezzi, M., Prattichizzo, D.: Mapping synergies from human to robotic hands with dissimilar kinematics: An object based approach. In: IEEE International Conference on Robotics and Automation, Workshop on Manipulation Under Uncertainty, Shanghai (2011)Google Scholar
  25. 25.
    Han, L., Trinkle, J.C.: The instantaneous kinematics of manipulation. In: IEEE International Conference on Robotics and Automation, Leuven (1998)Google Scholar
  26. 26.
    Han, L., Trinkle, J.C., Li, Z.X.: Grasp analysis as linear matrix inequality problems. IEEE Transactions on Robotics and Automation 16, 663–674 (2000)CrossRefGoogle Scholar
  27. 27.
    Helmke, U., Hüper, K., Moore, J.B.: Quadratically convergent algorithms for optimal dexterous hand grasping. IEEE Transactions on Robotics and Automation 18, 138–146 (2002)CrossRefGoogle Scholar
  28. 28.
    Helmke, U., Moore, J.B.: Optimization and Dynamic Systems. Springer, New York (1993)Google Scholar
  29. 29.
    Iberall, T.: Human prehension and dexterous robot hands. International Journal of Robotics Research 16, 285–299 (1997)CrossRefGoogle Scholar
  30. 30.
    Li, Z.X., Quin, Z., Jiang, S., Han, L.: Coordinated motion generation and real-time grasping force control for multifingered manipulation. In: IEEE International Conference on Robotics and Automation, Leuven (1998)Google Scholar
  31. 31.
    Lippiello, V., Ruggiero, F., Villani, L.: Exploiting redundancy in closed-loop inverse kinematics for dexterous object manipulation. In: International Conference on Advanced Robotics, Munich (2009)Google Scholar
  32. 32.
    Lippiello, V., Siciliano, B., Villani, L.: Online dextrous-hand grasping force optimization with dynamic torque constraints selection. In: IEEE International Conference on Robotics and Automation, Shanghai (2011)Google Scholar
  33. 33.
    Lippiello, V., Siciliano, B., Villani, L.: A grasping force optimization algorithm with dynamic torque constraints selection for multi-fingered robotic hands. In: American Control Conference, San Francisco, CA (2011)Google Scholar
  34. 34.
    Liu, G., Xu, J., Li, Z.: On geometric algorithms for real-time grasping force optimization. IEEE Transactions on Control System Technology 12, 843–859 (2004)CrossRefGoogle Scholar
  35. 35.
    Lotti, F., Vassura, G.: A novel approach to mechanical design of articulated fingers for robotic hands. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne (2002)Google Scholar
  36. 36.
    Mansard, N., Chaumette, F.: Task sequencing for high-level sensor-based control. IEEE Transactions on Robotics and Automation 23, 60–72 (2007)Google Scholar
  37. 37.
    Mason, C., Gomez, J., Ebner, T.: Hand synergies during reach-to-grasp. Journal of Neurophysiology 86, 2896–2910 (2001)Google Scholar
  38. 38.
    Matrone, G., Cipriani, C., Secco, E., Magenes, G., Carrozza, M.: Principal components analysis based control of a multi-dof underactuated prosthetic hand. Journal of NeuroEngineering and Rehabilitation 7(16), 1–16 (2010)Google Scholar
  39. 39.
    Montana, D.: The kinematics of contact and grasp. International Journal of Robotics Research 7(3), 17–32 (1988)CrossRefGoogle Scholar
  40. 40.
    Montana, D.: The kinematics of multi-fingered manipulation. IEEE Transactions on Robotics and Automation 11, 491–503 (1995)CrossRefGoogle Scholar
  41. 41.
    Murray, R., Li, Z.X., Sastry, S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)MATHGoogle Scholar
  42. 42.
    Napier, J.: The prehensile movements of the human hand. Journal of Bone and Joint Surgery 38-B, 902–913 (1956)Google Scholar
  43. 43.
    Okamura, A.M., Smaby, N., Cutkosky, M.R.: An overview of dextrous manipulation. In: IEEE International Conference on Robotics and Automation, San Francisco, CA (2000)Google Scholar
  44. 44.
    Palli, G., Borghesan, G., Melchiorri, C.: Modelling, identification and control of tendon-based actuation systems. IEEE Transactions on Robotics 27, 1–14 (2011)CrossRefGoogle Scholar
  45. 45.
    Platt, R., Fagg, A.H., Grupen, R.: Null-space grasp control: Theory and experiments. IEEE Transactions on Robotics 26, 282–295 (2010)CrossRefGoogle Scholar
  46. 46.
    Ponce, J., Sullivan, S., Sudsang, A., Boissonnat, J., Merlet, J.: On computing four-finger equilibrium and force-closure grasps of polyhedral objects. International Journal of Robotic Research 16, 11–35 (1996)CrossRefGoogle Scholar
  47. 47.
    Prattichizzo, D., Malvezzi, M., Bicchi, A.: On motion and force controllability of grasping hands with postural synergies. In: Robotics: Science and Systems, Zaragoza (2010)Google Scholar
  48. 48.
    Prattichizzo, D., Malvezzi, M., Gabiccini, M., Bicchi, A.: On the manipulability ellipsoids of underactuated robotic hands with compliance. Robotics and Autonomous Systems 60, 337–346 (2012)CrossRefGoogle Scholar
  49. 49.
    Prattichizzo, D., Trinkle, J.C.: Grasping. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 671–700. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  50. 50.
    Remond, C., Perdereau, V., Drouin, M.: A multi-fingered hand control structure with on-line grasping force optimization. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Como (2001)Google Scholar
  51. 51.
    Romero, J., Feix, T., Kjellstrom, H., Kragic, D.: Spatio-temporal modelling of grasping actions. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei (2010)Google Scholar
  52. 52.
    Santello, M., Flanders, M., Soechting, J.: Postural hand synergies for tool use. Journal of Neuroscience 18, 10105–10115 (1998)Google Scholar
  53. 53.
    Saut, J.P., Remond, C., Perdereau, V., Drouin, M.: Online computation of grasping force in multi-fingered hands. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton (2005)Google Scholar
  54. 54.
    Shlegl, T., Buss, M., Omata, T., Schmidt, G.: Fast dextrous regrasping with optimal contact force and contact sensor-based impedance control. In: IEEE International Conference on Robotics and Automation, Seoul (2001)Google Scholar
  55. 55.
    Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer, London (2009)Google Scholar
  56. 56.
    Uchiyama, M.: A unified approach to load sharing, motion decomposing, and force sensing of dual arm robots. In: Miura, H., Arimoto, S. (eds.) Robotics Research: The Fifth International Symposium, pp. 225–232. MIT Press, Cambridge (1994)Google Scholar
  57. 57.
    Vilaplana, J., Coronado, J.: A neural network model for coordination of hand gesture during reach to grasp. Neural Networks 19, 12–30 (2006)MATHCrossRefGoogle Scholar
  58. 58.
    Walker, I.D., Marcus, S.I., Freeman, R.A.: Distribution of dynamic loads for multiple cooperating robot manipulators. Journal of Robotic Systems 9, 35–47 (1989)CrossRefGoogle Scholar
  59. 59.
    Wimboeck, T., Jan, B., Hirzinger, G.: Synergy-level impedance control for a multifingered hand. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA (2011)Google Scholar
  60. 60.
    Xu, J., Lou, Y., Li, Z.: Grasping force optimization for whole hand grasping. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing (2006)Google Scholar
  61. 61.
    Zheng, Y.F., Luh, J.Y.S.: Optimal load distribution for two industrial robots handling a single object. In: IEEE International Conference on Robotics and Automation, Philadelphia, PA (1988)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Luigi Villani
    • 1
  • Fanny Ficuciello
    • 1
  • Vincenzo Lippiello
    • 1
  • Gianluca Palli
    • 2
  • Fabio Ruggiero
    • 1
  • Bruno Siciliano
    • 1
  1. 1.PRISMA Lab, Dipartimento di Informatica e SistemisticaUniversità degli Studi di Napoli Federico IINapoliItaly
  2. 2.Dipartimento di Elettronica Informatica e SistemisticaAlma Mater Studiorum Università di BolognaBolognaItaly

Personalised recommendations