Layered Programming by Demonstration and Planning for Autonomous Robot Manipulation

  • Rainer Jäkel
  • Steffen W. Rühl
  • Sven R. Schmidt-Rohr
  • Martin Lösch
  • Zhixing Xue
  • Rüdiger Dillmann
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 80)

Abstract

We propose a layered system for autonomous planning of complex service robot environment manipulation challenges. Motion planning, logic-based planning and probabilistic mission planning are integrated into a single system and planning models are generated using Programming by [human] Demonstration (PbD). The strength of planning models arises from the flexibility they give the robot in dealing with changing scenes and highly varying sequences of events. This comes at the cost of complex planning model representations and generation, however. Manually engineering very general descriptions covering a large sets of challenges is infeasible as is learning them exclusively by robot self-exploration. Thus, we present PbD for planning models together with generation of parameters from analysis of geometric scene properties to tackle that difficulty. Experimental results show the applicability of these techniques on natural learning and autonomous execution of complex robot manipulation challenges.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alami, R., Chatila, R., Fleury, S., Ghallab, M., Ingrand, F.: An architecture for autonomy. International Journal of Robotics Research 17, 315–337 (1998)CrossRefGoogle Scholar
  2. 2.
    Allen, J.: Maintaining knowledge about temporal intervals. Communications of the ACM 26, 832–843 (1983)MATHCrossRefGoogle Scholar
  3. 3.
    Asfour, T., Regenstein, K., Azad, P., Schröder, J., Vahrenkamp, N., Dillmann, R.: Armar-III: An integrated humanoid platform for sensory-motor control. In: 6th IEEE-RAS International Conference on Humanoid Robots, Genova (2006)Google Scholar
  4. 4.
    Aström, K.J.: Optimal control of Markov decision processes with incomplete state estimation. Journal of Mathematical Analysis and Applications 10, 174–205 (1965)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Azad, P., Asfour, T., Dillmann, R.: Combining apperance-based and model-based methods for real-time object recognition and 6D localization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing (2006)Google Scholar
  6. 6.
    Azad, P., Gockel, T., Dillmann, R.: Computer Vision: Das Praxisbuch. Elektor-Verlag, Aachen (2007)Google Scholar
  7. 7.
    Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: 26th Annual International Conference on Machine Learning, New York (2009)Google Scholar
  8. 8.
    Berenson, D., Srinivasa, S., Ferguson, D., Collet, A., Kuffner, J.: Manipulation planning with workspace goal regions. In: IEEE International Conference on Robotics and Automation, Kobe (2009)Google Scholar
  9. 9.
    Berenson, D., Srinivasa, S., Ferguson, D., Kuffner, J.: Manipulation planning on constraint manifolds. In: IEEE International Conference on Robotics and Automation, Kobe (2009)Google Scholar
  10. 10.
    Breazeal, C., Berlin, M., Brooks, A.G., Gray, J., Thomaz, A.L.: Using perspective taking to learn from ambiguous demonstrations. Robotics and Autonomous Systems 54, 385–393 (2006)CrossRefGoogle Scholar
  11. 11.
    Brock, O., Kuffner, J., Xiao, J.: Motion for manipulation tasks. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 615–645. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Bullet: The bullet physics library, http://bulletphysics.org
  13. 13.
    Calinon, S., Billard, A.: Teaching a humanoid robot to recognize and reproduce social cues. In: 15th IEEE International Symposium on Robot and Human Interactive Communication, Hatfield, UK (2006)Google Scholar
  14. 14.
    Calinon, S., Billard, A.: A probabilistic programming by demonstration framework handling skill constraints in joint space and task space. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice (2008)Google Scholar
  15. 15.
    Calinon, S., Guenter, F., Billard, A.: Goal-directed imitation in a humanoid robot. In: IEEE International Conference on Robotics and Automation, Barcelona (2005)Google Scholar
  16. 16.
    Calinon, S., Guenter, F., Billard, A.: On learning, representing, and generalizing a task in a humanoid robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B 37, 286–298 (2007)CrossRefGoogle Scholar
  17. 17.
    Cassandra, A.R., Kaelbling, L.P., Littman, M.L.: Acting optimally in partially observable stochastic domains. In: 12th National Conference on Artificial Intelligence, Seattle, WA (1994)Google Scholar
  18. 18.
    Chang, C., Lin, C.J.: LIBSVM: a Library for Support Vector Machines (2001)Google Scholar
  19. 19.
    Choi, D., Kang, Y., Lim, H., You, B.J.: Knowledge-based control of a humanoid robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Saint Louis, MO (2009)Google Scholar
  20. 20.
    Choi, J., Amir, E.: Combining planning and motion planning. In: IEEE International Conference on Robotics and Automation, Kobe (2009)Google Scholar
  21. 21.
    Daley, P., Frank, J., Iatauro, M., McGann, C., Taylor, W.: Planworks: A debugging environment for constraint based planning systems. In: International Conference on Knowledge Engeneering in Planning and Scheduling, Monterey, CA (2005)Google Scholar
  22. 22.
    Davies, D., Bouldin, D.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1, 224–227 (1979)CrossRefGoogle Scholar
  23. 23.
    Deckers, P., Dollar, A.M., Howe, R.D.: Guiding grasping with proprioception and Markov models. In: Robotics: Science and Systems, Workshop on “Robot Manipulation: Sensing and Adapting to the Real World”, Atlanta, GA (2007)Google Scholar
  24. 24.
    Dornhege, C., Gissler, M., Teschner, M., Nebel, B.: Integrating symbolic and geometric planning for mobile manipulation. In: IEEE International Workshop on Safety, Security and Rescue Robotics, Denver, CO (2009)Google Scholar
  25. 25.
    Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, New York (2003)MATHGoogle Scholar
  26. 26.
    Ekvall, S., Aarno, D., Kragic, D.: Task learning using graphical programming and human demonstrations. In: 15th IEEE International Symposium on Robot and Human Interactive Communication, Hatfield, UK (2006)Google Scholar
  27. 27.
    Erlhagen, W., Mukovskiy, A., Bicho, E., Panin, G., Kiss, C., Knoll, A., van Schie, H.T., Bekkering, H.: Goal-directed imitation for robots: A bio-inspired approach to action understanding and skill learning. Robotics and Autonomous Systems 54, 353–360 (2006)CrossRefGoogle Scholar
  28. 28.
    Freeman, J.: The modelling of spatial relations. Computer Graphics and Image Processing 4, 156–171 (1975)CrossRefGoogle Scholar
  29. 29.
    Friedrich, H., Dillmann, R., Rogalla, O.: Interactive Robot Programming Based on Human Demonstration and Advice. In: Noltemeier, H., Christensen, H.I. (eds.) Dagstuhl Seminar 1998. LNCS (LNAI), vol. 1724, pp. 96–119. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  30. 30.
    Gat, E.: On three-layer architectures. In: Kortenkamp, D., Bonnasso, R.P., Murphy, R. (eds.) Artificial Intelligence and Mobile Robots, pp. 195–210. AAAI, MIT Press, Cambridge, MA (1997)Google Scholar
  31. 31.
    Gat, E., Slack, M., Miller, D., Firby, R.: Path planning and execution monitoring for a planetary rover. In: IEEE International Conference on Robotics and Automation, Taipei (2003)Google Scholar
  32. 32.
    Genz, A.: Numerical computation of rectangular bivariate and trivariate normal and t probabilities. Statistics and Computing 14, 151–160 (2004)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A hierarchical structure for rapid interference detection. In: 23rd International Conference on Computer Graphics and Interactive Techniques, New Orleans, LA (1996)Google Scholar
  34. 34.
    Guan, Y., Yokoi, K.: Reachable space generation of a humanoid robot using the Monte Carlo method. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing (2006)Google Scholar
  35. 35.
    Guilamo, L., Kuffner, J., Nishiwaki, K., Kagami, S.: Efficient prioritized inverse kinematic solutions for redundant manipulators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton (2005)Google Scholar
  36. 36.
    Halkidi, M., Vazirgiannis, M., Batistakis, Y.: Quality scheme assessment in the clustering process. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 265–276. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  37. 37.
    Hertzberg, J., Chatila, R.: AI reasoning methods for robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 207–223. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  38. 38.
    Hoey, J., von Bertoldi, A., Poupart, P., Mihailidis, A.: Assisting persons with dementia during handwashing using a partially observable Markov decision process. In: 5th International Conference on Computer Vision Systems, Bielefeld (2007)Google Scholar
  39. 39.
    Hsiao, K., Kaelbling, L.P., Lozano-Pérez, T.: Grasping POMDPs. In: IEEE International Conference on Robotics and Automation, Roma (2007)Google Scholar
  40. 40.
    Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynamical systems in humanoid robots. In: IEEE International Conference on Robotics and Automation, Washington, DC (2002)Google Scholar
  41. 41.
    Jäkel, R., Meißner, P., Schmidt-Rohr, S.R., Dillmann, R.: Distributed generalization of learned planning models in robot Programming by Demonstration. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA (2011)Google Scholar
  42. 42.
    Jäkel, R., Schmidt-Rohr, S.R., Lösch, M., Dillmann, R.: Representation and constrained planning of manipulation strategies in the context of Programming by Demonstration. In: IEEE International Conference on Robotics and Automation, Anchorage, AK (2010)Google Scholar
  43. 43.
    Jäkel, R., Schmidt-Rohr, S.R., Lösch, M., Kasper, A., Dillmann, R.: Learning of generalized manipulation strategies in the context of Programming by Demonstration. In: 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN (2010)Google Scholar
  44. 44.
    Kasper, A.: KIT ObjectModels Web Database, http://wwwiaim.ira.uka.de/ObjectModels
  45. 45.
    Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. In: IEEE International Conference on Robotics and Automation, Minneapolis, MN (1996)Google Scholar
  46. 46.
    Keijzer, M., Merelo, J.J., Romero, G., Schoenauer, M.: Evolving objects: A general purpose evolutionary computation library. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 231–242. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  47. 47.
    Kim, Y.J., Otaduy, M.A., Lin, M.C., Manocha, D.: Fast penetration depth computation using rasterization hardware and hierarchical refinement, Technical Report, Department of Computer Science, University of North Carolina (2002)Google Scholar
  48. 48.
    Kleer, J.D., Brown, J.S.: A qualitative physics confluences. Artificial Intelligence 24, 7–83 (1984)CrossRefGoogle Scholar
  49. 49.
    Kormushev, P., Calinon, S., Saegusa, R., Metta, G.: Learning the skill of archery by a humanoid robot Icub. In: 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN (2010)Google Scholar
  50. 50.
    Kuffner, J.J., LaValle, S.M.: RRT-Connect: An efficient approach to single-query path planning. In: IEEE International Conference on Robotics and Automation, San Francisco, CA (2000)Google Scholar
  51. 51.
    Kurniawati, H., Hsu, D., Lee, W.: SARSOP: Efficient point-based POMDP planning by approximating optimally reachable belief spaces. In: Robotics: Science and Systems, Zurich (2008)Google Scholar
  52. 52.
    Lemaignan, S., Ros, R., Mösenlechner, L., Alami, R., Beetz, M.: ORO, a knowledge management platform for cognitive architectures in robotics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei (2010)Google Scholar
  53. 53.
    Lösch, M., Schmidt-Rohr, S., Knoop, S., Vacek, S., Dillmann, R.: Feature set selection and optimal classifier for human activity recognition. In: 16th IEEE International Symposium on Robot and Human Interactive Communication, Jeju Island, Korea (2007)Google Scholar
  54. 54.
    Lösch, M., Schmidt-Rohr, S.R., Dillmann, R.: Making feature selection for human motion recognition more interactive through the use of taxonomies. In: 17th IEEE International Symposium on Robot and Human Interactive Communication, München (2008)Google Scholar
  55. 55.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA (1967)Google Scholar
  56. 56.
    Mahalanobis, P.C.: On the generalised distance in statistics. Proceedings National Institute of Science, India 2(1), 49–55 (1936)MathSciNetMATHGoogle Scholar
  57. 57.
    Meeussen, W., Rutgeerts, J., Gadeyne, K., Bruyninckx, H., De Schutter, J.: Contact-state segmentation using particle filters for programming by human demonstration in compliant-motion tasks. IEEE Transactions on Robotics 23, 218–231 (2006)CrossRefGoogle Scholar
  58. 58.
    Meißner, P., Schmidt-Rohr, S.R., Lösch, M., Jäkel, R., Dillmann, R.: Robust localization of furniture parts by integrating depth and intensity data suitable for range sensors with varying image quality. In: 15th International Conference on Advanced Robotics, Tallinn (2011)Google Scholar
  59. 59.
    Morinaga, S., Kosuge, K.: Collision detection system for manipulator based on adaptive impedance control law. In: IEEE International Conference on Robotics and Automation, Taipei (2003)Google Scholar
  60. 60.
    Mühlig, M., Gienger, M., Steil, J., Goerick, C.: Automatic selection of task spaces for imitation learning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Saint Louis, MO (2009)Google Scholar
  61. 61.
    Mühlig, M., Gienger, M., Steil, J.J.: Human-robot interaction for learning and adaptation of object movements. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei (2010)Google Scholar
  62. 62.
    Mülling, K., Kober, J., Peters, J.: Simulating human table tennis with a biomimetic robot setup. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS, vol. 6226, pp. 273–282. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  63. 63.
    Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., Schaal, S.: Skill learning and task outcome prediction for manipulation. In: IEEE International Conference on Robotics and Automation, Shanghai (2011)Google Scholar
  64. 64.
    Patrón, P., Miguelañez, E., Petillot, Y.R., Lane, D.M.: Fault tolerant adaptive mission planning with semantic knowledge representation for autonomous underwater vehicles. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice (2008)Google Scholar
  65. 65.
    Pettersson, O.: Execution monitoring in robotics: A survey. Robotics and Autonomous Systems 53, 73–88 (2005)CrossRefGoogle Scholar
  66. 66.
    Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: An anytime algorithm for POMDPs. In: International Joint Conference on Artificial Intelligence, Acapulco (2003)Google Scholar
  67. 67.
    Pineau, J., Thrun, S.: High-level robot behavior control using POMDPs. In: AAAI Workshop on Cognitive Robotics, Edmonton (2002)Google Scholar
  68. 68.
    Primesense Nite Middleware, http://www.primesense.com/en/nite
  69. 69.
    Rühl, S.W., Hermann, A., Xue, Z., Kerscher, T., Dillmann, R.: Generating a symbolic scene description for robot manipulation using physics simulation. In: Multibody Dynamics, Brussels (2011)Google Scholar
  70. 70.
    Rühl, S.W., Hermann, A., Xue, Z., Kerscher, T., Dillmann, R.: Graspability: A description of work surfaces for planning of robot manipulation sequences. In: IEEE International Conference on Robotics and Automation, Shanghai (2011)Google Scholar
  71. 71.
    Rühl, S.W., Xue, Z., Zöllner, J., Dillmann, R.: Integration of a loop based and an event based framework for control of a bimanual dextrous service robot. In: IEEE International Conference on Robotics and Biomimetics, Guilin, China (2009)Google Scholar
  72. 72.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Upper Saddle River (2003)Google Scholar
  73. 73.
    Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing 26, 43–49 (1978)MATHCrossRefGoogle Scholar
  74. 74.
    Schmidt-Rohr, S.R., Dirschl, G., Meissner, P., Dillmann, R.: A knowledge base for learning probabilistic decision making from human demonstrations by a multimodal service robot. In: 15th International Conference on Advanced Robotics, Tallinn (2011)Google Scholar
  75. 75.
    Schmidt-Rohr, S.R., Knoop, S., Lösch, M., Dillmann, R.: Bridging the gap of abstraction for probabilistic decision making on a multi-modal service robot. In: Robotics: Science and Systems, Zurich (2008)Google Scholar
  76. 76.
    Schmidt-Rohr, S.R., Lösch, M., Jäkel, R., Dillmann, R.: Programming by Demonstration of probabilistic decision making on a multi-modal service robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei (2010)Google Scholar
  77. 77.
    Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer, Heidelberg (2008)MATHGoogle Scholar
  78. 78.
    Simeon, T., Cortes, J., Sahbani, A., Laumond, J.P.: A manipulation planner for pick and place operations under continuous grasps and placements. In: IEEE International Conference on Robotics and Automation, Washington, DC (2002)Google Scholar
  79. 79.
    Slaney, J., Thiebaux, S.: Blocks world revisited. Artificial Intelligence 125, 119–153 (2001)MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    Sondik, E.J.: The optimal control of partially observable Markov decision processes, Ph.D. thesis, Stanford University (1971)Google Scholar
  81. 81.
    Sridharan, M., Wyatt, J., Dearden, R.: Hippo: Hierarchical POMDPs for planning information processing and sensing actions on a robot. In: International Conference on Automated Planning and Scheduling, Sydney (2008)Google Scholar
  82. 82.
    Steffen, J., Elbrechter, C., Haschke, R., Ritter, H.: Bio-inspired motion strategies for a bimanual manipulation task. In: 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN (2010)Google Scholar
  83. 83.
    Stilman, M.: Task constrained motion planning in robot joint space. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA (2007)Google Scholar
  84. 84.
    Stilman, M., Schamburek, J.U., Kuffner, J., Asfour, T.: Manipulation planning among movable obstacles. In: IEEE International Conference on Robotics and Automation, Roma (2007)Google Scholar
  85. 85.
    Suh, I.H., Lim, G.H., Hwang, W., Suh, H., Choi, J.H., Park, Y.T.: Ontology-based multi-layered robot knowledge framework (OMRKF) for robot intelligence. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA (2007)Google Scholar
  86. 86.
    Tenorth, M., Beetz, M.: KnowRob — Knowledge processing for autonomous personal robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Saint Louis, MO (2009)Google Scholar
  87. 87.
    Vahrenkamp, N., Scheurer, C., Asfour, T., Kuffner, J., Dillmann, R.: Adaptive motion planning for humanoid robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice (2008)Google Scholar
  88. 88.
    Veeraraghavan, H., Veloso, M.M.: Learning task specific plans through sound and visually interpretable demonstrations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice (2008)Google Scholar
  89. 89.
    Xie, X., Beni, G.: A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 841–847 (1991)CrossRefGoogle Scholar
  90. 90.
    Xue, Z., Kasper, A., Zöllner, J., Dillmann, R.: An automatic grasp planning system for service robots. In: 14th International Conference on Advanced Robotics, München (2009)Google Scholar
  91. 91.
    Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research 5, 1205–1224 (2004)MathSciNetMATHGoogle Scholar
  92. 92.
    Zacharias, F., Borst, C., Hirzinger, G.: Capturing robot workspace structure: Representing robot capabilities. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA (2007)Google Scholar
  93. 93.
    Zöllner, R., Pardowitz, M., Knoop, S., Dillmann, R.: Towards cognitive robots: Building hierarchical task representations of manipulations from human demonstration. In: IEEE International Conference on Robotics and Automation, Barcelona (2005)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Rainer Jäkel
    • 1
  • Steffen W. Rühl
    • 2
  • Sven R. Schmidt-Rohr
    • 1
  • Martin Lösch
    • 1
  • Zhixing Xue
    • 2
  • Rüdiger Dillmann
    • 1
  1. 1.Humanoids and Intelligence Systems Lab, Institut für AnthropomatikKarlsruher Institut für TechnologieKarlsruheGermany
  2. 2.FZI Forschungszentrum InformatikKarlsruheGermany

Personalised recommendations