Indexing Network Voronoi Diagrams

  • Ugur Demiryurek
  • Cyrus Shahabi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7238)

Abstract

The Network Voronoi diagram and its variants have been extensively used in the context of numerous applications in road networks, particularly to efficiently evaluate various spatial proximity queries such as k nearest neighbor (kNN), reverse kNN, and closest pair. Although the existing approaches successfully utilize the network Voronoi diagram as a way to partition the space for their specific problems, there is little emphasis on how to efficiently find and access the network Voronoi cell containing a particular point or edge of the network. In this paper, we study the index structures on network Voronoi diagrams that enable exact and fast response to contain query in road networks. We show that existing index structures, treating a network Voronoi cell as a simple polygon, may yield inaccurate results due to the network topology, and fail to scale to large networks with numerous Voronoi generators. With our method, termed Voronoi-Quad-tree (or VQ-tree for short), we use Quad-tree to index network Voronoi diagrams to address both of these shortcomings. We demonstrate the efficiency of VQ-tree via experimental evaluations with real-world datasets consisting of a variety of large road networks with numerous data objects.

Keywords

Road Network Voronoi Diagram Query Point Voronoi Cell Neighbor Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cho, H.-J., Chung, C.-W.: An efficient and scalable approach to cnn queries in a road network. In: VLDB (2005)Google Scholar
  2. 2.
    Erwig, M., Hagen, F.: The graph voronoi diagram with applications. Journal of Networks 36 (2000)Google Scholar
  3. 3.
    Finkel, R.A., Bentley, J.L.: Quad trees: A data structure for retrieval on composite keys. Acta Informatica (1974)Google Scholar
  4. 4.
    Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD (1984)Google Scholar
  5. 5.
    Hu, H., Lee, D.L., Xu, J.: Fast Nearest Neighbor Search on Road Networks. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 186–203. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Jensen, C.S., Kolářvr, J., Pedersen, T.B., Timko, I.: Nearest neighbor queries in road networks. In: GIS (2003)Google Scholar
  7. 7.
    Kolahdouzan, M., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial network databases. In: VLDB (2004)Google Scholar
  8. 8.
    Kolahdouzan, M.R., Shahabi, C.: Continuous k-nearest neighbor queries in spatial network databases. In: STDBM (2004)Google Scholar
  9. 9.
    Mokbel, M.F., Xiong, X., Aref, W.G.: Sina: scalable incremental processing of continuous queries in spatio-temporal databases. In: SIGMOD (2004)Google Scholar
  10. 10.
    NAVTEQ, www.navteq.com (accessed in May 2011)
  11. 11.
    Nutanong, S., Tanin, E., Ali, M.E., Kulik, L.: Local network voronoi diagrams. In: SIGSPATIAL (2010)Google Scholar
  12. 12.
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tessellations — concepts and applications of voronoi diagrams (2000)Google Scholar
  13. 13.
    Okabe, A., Satoh, T., Furuta, T., Suzuki, A., Okano, K.: Generalized network voronoi diagrams: Concepts, computational methods, and applications. Int. J. Geogr. Inf. Sci. (2008)Google Scholar
  14. 14.
    Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: VLDB (2003)Google Scholar
  15. 15.
    Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD (1995)Google Scholar
  16. 16.
    Safar, M.: Group-nearest neighbors queries in spatial network databases. Journal of Geographical Systems (2008)Google Scholar
  17. 17.
    Safar, M., Ibrahimi, D., Taniar, D.: Voronoi-based reverse nearest neighbor query processing on spatial networks. Multimedia Systems (2009)Google Scholar
  18. 18.
    Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan-Kaufmann, San Francisco (2006)MATHGoogle Scholar
  19. 19.
    Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial databases. In: SIGMOD (2008)Google Scholar
  20. 20.
    Sellis, T.K., Roussopoulos, N., Faloutsos, C.: R+-tree: A dynamic index for multi-dimensional objects. In: VLDB 1987 (1987)Google Scholar
  21. 21.
    Song, Z., Roussopoulos, N.: K-Nearest Neighbor Search for Moving Query Point. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 79–96. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Taniar, D., Safar, M., Tran, Q.T., Rahayu, J.W., Park, J.H.: Spatial network rnn queries in gis. Comput. J. (2011)Google Scholar
  23. 23.
    Tao, Y., Papadias, D., Lian, X.: Reverse knn search in arbitrary dimensionality. In: VLDB (2004)Google Scholar
  24. 24.
    Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB (2002)Google Scholar
  25. 25.
    Huang, X., Jensen, C.S., Šaltenis, S.: The Island Approach to Nearest Neighbor Querying in Spatial Networks. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 73–90. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Xuan, K., Zhao, G., Taniar, D., Rahayu, J.W., Safar, M., Srinivasan, B.: Voronoi-based range and continuous range query processing in mobile databases. J. Comput. Syst. Sci. (2011)Google Scholar
  27. 27.
    Xuan, K., Zhao, G., Taniar, D., Srinivasan, B., Safar, M., Gavrilova, M.: Network voronoi diagram based range search. In: Advanced Information Networking and ApplicationsGoogle Scholar
  28. 28.
    Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate nearest neighbor queries in road networks. In: ICDE (2005)Google Scholar
  29. 29.
    Yiu, M.L., Papadias, D., Mamoulis, N., Tao, Y.: Reverse nearest neighbors in large graphs. In: ICDE (2005)Google Scholar
  30. 30.
    Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial queries. In: SIGMOD (2003)Google Scholar
  31. 31.
    Zhao, G., Xuan, K., Taniar, D., Safar, M., Gavrilova, M., Srinivasan, B.: Multiple Object Types KNN Search Using Network Voronoi Diagram. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2009, Part II. LNCS, vol. 5593, pp. 819–834. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  32. 32.
    Zheng, B., Lee, D.L.: Semantic Caching in Location-Dependent Query Processing. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 97–113. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ugur Demiryurek
    • 1
  • Cyrus Shahabi
    • 1
  1. 1.Department of Computer ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations