Animals as a Source of Drugs: Bioprospecting and Biodiversity Conservation

  • Rômulo Romeu Nóbrega Alves
  • Ulysses Paulino Albuquerque
Chapter

Abstract

Plants and animals are undoubtedly the basis of many traditional medicine systems around the world. Although the pharmacological potential of animals used as medicines has been little explored, compared to plants, available studies show that animal natural resources are highly promising in the search for new drugs of medical or pharmaceutical interest. The exploitation of these resources, however, requires a careful strategy that allows the sustainability of the species exploited, since the exploitation of fauna in medicinal bioprospecting can result in overharvesting of target organisms. In view of this reality, economic development associated with animal bioprospecting should be preceded by a broad discussion of the conservation of biodiversity and the sustainable management of natural resources. In this chapter, we review the literature on the potential of animal-based medicines for developing new drugs, and briefly discuss the implications of bioprospecting for the conservation of these bioresources.

Keywords

Traditional Medicine Musk Deer Marine Natural Product Pharmacological Potential Stag Beetle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adeodato S (1997) Os santos remédios do mar. Globo Ciência 4:20–25Google Scholar
  2. Aerts AM, François I, Cammue BPA, Thevissen K (2008) The mode of antifungal action of plant, insect and human defensins. Cell Mol Life Sci 65(13):2069–2079PubMedCrossRefGoogle Scholar
  3. Ahn MY, Hahn BS, Lee PJ, Wu SJ, Kim YS (2006) Purification and characterization of anticoagulant protein from the tabanus, tabanus bivittatus. Arch Pharm Res 29(5):418–423PubMedCrossRefGoogle Scholar
  4. Ahn MY, Ryu KS, Lee YW, Kim YS (2000) Cytotoxicity and L-amino acid oxidase activity of crude insect drugs. Arch Pharm Res 23(5):477–481PubMedCrossRefGoogle Scholar
  5. Alam M, Thomson RH (1998) Handbook of natural products from marine invertebrates. Part 1 phylum mollusca. Harwood Academic Publishers, AustraliaGoogle Scholar
  6. Albuquerque UP, Hanazaki N (2006) As pesquisas etnodirigidas na descoberta de novas drogas de interesse médico e farmacêutico: fragilidade e perspectivas. Revista Brasileira de Farmacognosia 16:678–689CrossRefGoogle Scholar
  7. Alvarez B, Crisp MD, Driver F, Hooper JNA, Soest RWMV (2000) Phylogenetic relationships of the family Axinellidae (Porifera: Demospongiae) using morphological and molecular data. Zool Scripta 29:169–198CrossRefGoogle Scholar
  8. Alves RRN (2009) Fauna used in popular medicine in Northeast Brazil. J Ethnobiol Ethnomed 5(1):1–30. doi: 10.1186/1746-4269-5-1 PubMedCrossRefGoogle Scholar
  9. Alves RRN, Alves HN (2011) The faunal drugstore: animal-based remedies used in traditional medicines in Latin America. J Ethnobiol Ethnomed 7(9):1–43Google Scholar
  10. Alves RRN, Barboza RRD, Souto WMS (2010a) A global overview of canids used in traditional medicines. Biodivers Conserv 19(6):1513–1522CrossRefGoogle Scholar
  11. Alves RRN, Dias TLP (2010) Usos de invertebrados na medicina popular no Brasil e suas implicações para conservação. Trop Conserv Sci 3(2):159–174Google Scholar
  12. Alves RRN, Rosa IL (2005) Why study the use of animal products in traditional medicines? J Ethnobiol Ethnomed 1(5):1–5. doi: 10.1186/1746-4269-1 Google Scholar
  13. Alves RRN, Rosa IL (2006) From cnidarians to mammals: the use of animals as remedies in fishing communities in NE Brazil. J Ethnopharmacol 107:259–276PubMedCrossRefGoogle Scholar
  14. Alves RRN, Rosa IL (2007a) Biodiversity, traditional medicine and public health: where do they meet? J Ethnobiol Ethnomed 3(14):9. doi: 10.1186/1746-4269-3-14 Google Scholar
  15. Alves RRN, Rosa IL (2007b) Zootherapy goes to town: the use of animal-based remedies in urban areas of NE and N Brazil. J Ethnopharmacol 113:541–555. doi: 10.1016/j.jep.2007.07.015 PubMedCrossRefGoogle Scholar
  16. Alves RRN, Rosa IL, Santana GG (2007) The role of animal-derived remedies as complementary medicine in Brazil. Bioscience 57(11):949–955CrossRefGoogle Scholar
  17. Alves RRN, Silva CC, Barboza RRD, Souto WMS (2009) Zootherapy as an alternative therapeutic in South America. J Altern Med Res 1(1):21–47Google Scholar
  18. Alves RRN, Souto WMS (2010) Etnozoologia: conceitos, considerações históricas e importância. In: Alves RRN, Souto WMS, Mourão JS (eds) A etnozoologia no Brasil: Importância, Status atual e Perspectivas, 1st edn. vol 7. NUPEEA, Recife, pp 19–40Google Scholar
  19. Alves RRN, Souto WMS, Barboza RRD (2010b) Primates in traditional folk medicine: a world overview. Mamm Rev 40(2):155–180. doi: 10.1111/j.1365-2907.2010.00158.x CrossRefGoogle Scholar
  20. Amador ML, Jimeno J, Paz-Ares L, Cortes-Funes H, Hidalgo M (2003) Progress in the development and acquisition of anticancer agents from marine sources. Ann Oncol 14(11):1607–1615PubMedCrossRefGoogle Scholar
  21. Amato I (1992) From’hunter magic’, a pharmacopeia? Science 258(5086):1306PubMedCrossRefGoogle Scholar
  22. Andary C, Motte-Florac E, Ramos-Elorduy J (1996) Privat a chemical screening: updated methodology applied to medicinal insects. In: The 3rd European colloquium on ethnopharmacology and 1st international conference of anthropology and history of health and diseaseGoogle Scholar
  23. Antonelli A, Rodriguez V (2009) Brazil should facilitate research permits. Conservation Biol 23(5):1068–1074Google Scholar
  24. Armon PJ (1980) The use of honey in the treatment of infected wounds. Trop Doct 10(2):91PubMedGoogle Scholar
  25. Artuso A (2002) Bioprospecting, benefit sharing, and biotechnological capacity building. World Dev 30(8):1355–1368CrossRefGoogle Scholar
  26. Ashwell D, Walston N (2008) An overview of the use and trade of plants and animals in traditional medicine systems in Cambodia, 1st edn. TRAFFIC Southeast Asia, Greater Mekong Programme, Ha NoiGoogle Scholar
  27. Avila C (2006) Molluscan natural products as biological models: chemical ecology, histology and laboratory culture. In: Cimino G, Gavagnin M (eds) Molluscs: progress in molecular and subcellular biology subseries marine molecular biochemistry. Springer, Berlin, pp 1–23Google Scholar
  28. Bankova V, Christov R, Popov S, Marcucci MC, Tsvetkova I, Kujumgiev A (1999) Antibacterial activity of essential oils from Brazilian propolis. Fitoterapia 70(2):190–193CrossRefGoogle Scholar
  29. Barrett CB, Lybbert TJ (2000) Is bioprospecting a viable strategy for conserving tropical ecosystems? Ecol Econ 34(3):293–300CrossRefGoogle Scholar
  30. Barsh R (1997) The epistemology of traditional healing systems. Hum Organ 56(1):28–37Google Scholar
  31. Beattie AJ, Barthlott W, Elisabetsky E, Farrel R, Kheng CT, Prance I, Rosenthal J, Simpson D, Leakey R, Wolfson M (2005) New products and industries from biodiversity. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and humanwell-being, vol 1. Millennium Ecosystem Assessment, Island Press, Washington, pp 273–295Google Scholar
  32. Beattie AJ, Hay M, Magnusson B, Nys R, Smeathers J, Vincent JFV (2011) Ecology and bioprospecting. Austral Ecol 36(3):341–356Google Scholar
  33. Benkendorff K (2002) Potential conservation benefits and problems associated with bioprospecting in the marine environment. In: Lumley D, Dickman C (eds) A zoological revolution: using native fauna to assist in its own survival. Royal Zoological Society of New South Wales and Australian Museum, Mosman, pp 90–100Google Scholar
  34. Benkendorff K (2010) Molluscan biological and chemical diversity: secondary metabolites and medicinal resources produced by marine molluscs. Biol Rev 85:757–775PubMedGoogle Scholar
  35. Berlinck RGS, Ogawa CA, Almeida AMP, Sanchez MAA, Malpezzi ELA, Costa LV, Hajdu E, De Freitas JC (1996) Chemical and pharmacological characterization of halitoxin from Amphimedon viridis (Porifera) from the southeastern Brazilian coast. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology and Toxicology 115(2):155–163Google Scholar
  36. Bernan VS, Greenstein M, Maiese WM (1997) Marine microorganisms as a source of new natural products. Adv Appl Microbiol 43:57–90PubMedCrossRefGoogle Scholar
  37. Bhasin V (2007) Medical anthropology: a review. Stud Ethno-Med 1(1):1–20Google Scholar
  38. Bisset NG (1991) One man’s poison, another man’s medicine? J Ethnopharmacol 32(1–3):71–81PubMedCrossRefGoogle Scholar
  39. Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13(1):61–92PubMedCrossRefGoogle Scholar
  40. Boman HG (2000) Innate immunity and the normal microflora. Immunol Rev 173(1):5–16PubMedCrossRefGoogle Scholar
  41. Boman HG, Ingrid F, Gudmundsson GH, Jong-Youn LEE, Lidholm DA (1991) Cell-free immunity in Cecropia. Eur J Biochem 201(1):23–31PubMedCrossRefGoogle Scholar
  42. Branicki FJ (1981) Surgery in western Kenya. Ann R Coll Surg Engl 63(5):348–352PubMedGoogle Scholar
  43. Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12(1):3–11PubMedCrossRefGoogle Scholar
  44. But PP, Tam YK, Lung LC (1991) Ethnopharmacology of rhinoceros horn. II: antipyretic effects of prescriptions containing rhinoceros horn or water buffalo horn. J Ethnopharmacol 33(1–2):45–50PubMedGoogle Scholar
  45. Calixto JB (2005) Twenty-five years of research on medicinal plants in Latin America: a personal view. J Ethnopharmacol 100(1–2):131–134PubMedCrossRefGoogle Scholar
  46. Carté BK (1996) Biomedical potential of marine natural products. Bioscience 46(4):271–286CrossRefGoogle Scholar
  47. Cavanagh D, Beazley J, Ostapowicz F (1970) Radical operation for carcinoma of the vulva. BJOG: An Intern J Obstet Gynaecol 77(11):1037–1040CrossRefGoogle Scholar
  48. Chapman AD (2009) Numbers of living species in Australia and the world. Australian Biological Resources Study, CanberraGoogle Scholar
  49. Chivian E (2002a) Biodiversity: its importance to human health. Harvard Medical School, BostonGoogle Scholar
  50. Chivian E (2002b) Biodiversity: its importance to human health. Center for Health and the Global Environment. Harvard Medical School, CambridgeGoogle Scholar
  51. Chivian E, Roberts CM, Bernstein AS (2003) The threat to cone snails. Science 302(5644):391PubMedCrossRefGoogle Scholar
  52. Clarke BT (1997) The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol Rev 72(3):365–379PubMedCrossRefGoogle Scholar
  53. Colwell RR (1997) Microbial biodiversity and biotechnology. In: Reaka-Kudla ML, Wilson DE, Wilson EO (eds) Biodiversity II: understanding and protecting our biological resources. National Academy Press, Washington, pp 77–98Google Scholar
  54. Confessor M, Mendonca L, Mourao J, Alves R (2009) Animals to heal animals: ethnoveterinary practices in semi-arid region, Northeastern Brazil. J Ethnobiol Ethnomed 5(1):37PubMedCrossRefGoogle Scholar
  55. Costa-Neto EM (2000) Zootherapy based medicinal traditions in Brazil. Honey Bee 11(2):2–4Google Scholar
  56. Costa-Neto EM (2005) Entomotherapy, or the medicinal use of insects. J Ethnobiol 25(1):93–114CrossRefGoogle Scholar
  57. Costa-Neto EM (2006) Os moluscos na zooterapia: medicina tradicional e importância clínico-farmacológica. Biotemas 19(3):71–78Google Scholar
  58. Costa-Neto EM, Alves RRN (2010) Zooterapia: os animais na medicina popular Brasileira, Estudos & Avanços, 1st edn. vol 2. NUPEEA, RecifeGoogle Scholar
  59. Cragg GM, Newman DJ (2001) Medicinals for the millennia: the historical record. Ann N Y Acad Sci 953:3–25PubMedCrossRefGoogle Scholar
  60. Daly JW (1998) Thirty years of discovering arthropod alkaloids in amphibian skin†. J Nat Prod 61(1):162–172PubMedCrossRefGoogle Scholar
  61. Daly JW (2003) Ernest Guenther award in chemistry of natural products. Amphibian skin: a remarkable source of biologically active arthropod alkaloids. J Med Chem 46(4):445–452Google Scholar
  62. Debnath A, Chatterjee U, Das M, Vedasiromoni JR, Gomes A (2007) Venom of Indian monocellate cobra and Russell’s viper show anticancer activity in experimental models. J Ethnopharmacol 111(3):681–684PubMedCrossRefGoogle Scholar
  63. Demunshi Y, Chugh A (2010) Role of traditional knowledge in marine bioprospecting. Biodivers Conserv 19:3015–3033CrossRefGoogle Scholar
  64. Dettner K (2011) Potential pharmaceuticals from insects and their co-occurring microorganisms. In: Vilcinskas A (ed) Insect biotechnology. Springer, Berlin, pp 95–119Google Scholar
  65. Dhillion SS, Amundsen C (2000) Bioprospecting and the maintenance of biodiversity. In: Svarstad H, Dhillion SS (eds) Responding to bioprospecting: from biodiversity in the south to medicines in the north. Spartacus Forlag A/S, Oslo, pp 103–131Google Scholar
  66. Dossey AT (2010) Insects and their chemical weaponry: new potential for drug discovery. Nat Prod Rep 27:1737–1757PubMedCrossRefGoogle Scholar
  67. Efem SE (1993) Recent advances in the management of Fournier’s gangrene: preliminary observations. Surgery 113(2):200–204PubMedGoogle Scholar
  68. Efem SEE, Iwara CI (1992) The antimicrobial spectrum of honey and its clinical significance. Infection 20(4):227–229PubMedCrossRefGoogle Scholar
  69. Eisner T (1990) Prospecting for nature’s chemical riches. Chemoecology 1(1):38–40Google Scholar
  70. Ellis R (2005) Tiger bone & rhino horn: the destruction of wildlife for traditional Chinese medicine. Shearwater Books, WashingtonGoogle Scholar
  71. Farnsworth NR, Bingel AS (1997) Problems and prospects of discovering new drugs from higher plants by pharmacological screening. In: Wagner H, Wolff P (eds) New natural products and plant drugs with pharmacological, biological or therapeutic activity. Springer, Berlin, pp 1–22Google Scholar
  72. Faulkner DJ (1998) Marine natural products. Nat Prod Rep 15(2):113–158PubMedCrossRefGoogle Scholar
  73. Ferreira FS, Brito S, Ribeiro S, Almeida W, Alves RRN (2009a) Zootherapeutics utilized by residents of the community Poco Dantas, Crato-CE Brazil. J Ethnobiol Ethnomed 5(1):21PubMedCrossRefGoogle Scholar
  74. Ferreira FS, Brito SV, Costa JGM, Alves RRN, Coutinho HDM, Almeida WdO (2009b) Is the body fat of the lizard Tupinambis merianae effective against bacterial infections? J Ethnopharmacol 126(2):233–237. doi: 10.1016/j.jep.2009.08.038
  75. Ferreira FS, Brito SV, Fernandes-Ferreira H, Alves RRN (2010) Prospecção biológica, recursos zooterápicos e sustentabilidade. In: Costa-Neto EM, Alves RRN (eds) Zooterapia: Os Animais na Medicina Popular Brasileira, 1st edn, vol 2. NUPEEA, Recife, pp 141–158Google Scholar
  76. Ferreira FS, Silva NLG, Matias EFF, Brito SV, Oliveira FG, Costa JGM, Coutinho HDM, Almeida WO, Alves RRN (2011) Potentiation of aminoglycoside antibiotic activity using the body fat from the snake Boa constrictor. Revista brasileira de farmacognosia 21(3):503–509Google Scholar
  77. Finger JM, Schuler P (2004) Poor people’s knowledge: promoting intellectual property in developing countries. A World Bank Publication, WashingtonGoogle Scholar
  78. Finkl CW (1984) Os medicamentos do mar. Enciclopédia dos mares 1:74–75Google Scholar
  79. Firn RD (2003) Bioprospecting–why is it so unrewarding? Biodivers Conserv 12(2):207–216CrossRefGoogle Scholar
  80. Fitter RSR (1986) Wildlife for man: how and why we should conserve our species. Collins, LondonGoogle Scholar
  81. Fusetani N (2000) Drugs from the Sea. Karger, New YorkGoogle Scholar
  82. Garson M (1997) Biodiversity and bioprospecting. Australas J Nat Resour Law and Policy 4(2):227–239Google Scholar
  83. Gertsch J (2009) How scientific is the science in ethnopharmacology? Historical perspectives and epistemological problems. J Ethnopharmacol 122(2):177–183Google Scholar
  84. Giday M, Teklehaymanot T, Animut A, Mekonnen Y (2007) Medicinal plants of the Shinasha, Agew-awi and Amhara peoples in northwest Ethiopia. J Ethnopharmacol 110:516–525. doi: 10.1016/j.jep.2006.10.011 Google Scholar
  85. Giraldi T, Ferlan I, Romeo D (1976) Antitumour activity of equinatoxin. Chem Biol Interact 13(3–4):199–203PubMedCrossRefGoogle Scholar
  86. Gomes A, Bhattacharjee P, Mishra R, Biswas AK, Dasgupta SC, Giri B, Debnath A, Gupta SD, Das T (2010) Anticancer potential of animal venoms and toxins. Indian J Exp Biol 48(2):93–103PubMedGoogle Scholar
  87. Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discovery Today 8(12):536–544PubMedCrossRefGoogle Scholar
  88. Haygood MG, Schmidt EW, Davidson SK, Faulkner DJ (1999) Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J Mol Microbiol Biotechnol 1(1):33–43PubMedGoogle Scholar
  89. Heinrich M, Ankli A, Frei B, Weimann C, Sticher O (1998) Medicinal plants in Mexico: healers’ consensus and cultural importance. Soc Sci Med 47(11):1859–1871PubMedCrossRefGoogle Scholar
  90. Honda A, Yamamoto Y, Mori Y, Yamada Y, Kikuchi H (1985) Antileukemic effect of coral-prostanoids clavulones from the stolonifer on human myeloid leukemia (HL-60) cells. Biochem Biophys Res Commun 130(2):515–523PubMedCrossRefGoogle Scholar
  91. Houghton PJ, Howes MJ, Lee CC, Steventon G (2007) Uses and abuses of in vitro tests in ethnopharmacology: visualizing an elephant. J Ethnopharmacol 110(3):391–400Google Scholar
  92. Hultmark D, Steiner H, Rasmuson T, Boman HG (1980) Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106(1):7–16PubMedCrossRefGoogle Scholar
  93. Hunt B, Vincent ACJ (2006) Scale and sustainability of marine bioprospecting for pharmaceuticals. AMBIO: A Jo Human Environ 35(2):57–64Google Scholar
  94. Ireland CM, Copp BR, Foster MP, McDonald LA, Radisky DC, Swersey JC (1993) Biomedical potential of marine natural products. Mar Biotechnol 1:1–43Google Scholar
  95. Jensen JB, Camp CD (2003) Human exploitation of amphibians: direct and indirect impacts. In: Semlitsch RD (ed) Amphibian conservation. Smithsonian Books, Washington, pp 199–213Google Scholar
  96. Jensen PR, Fenical W (1994) Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Annu Rev Microbiol 48(1):559–584PubMedCrossRefGoogle Scholar
  97. Karthikeyan R, Karthigayan S, Sri Balasubashini M, Somasundaram ST, Balasubramanian T (2008) Inhibition of Hep2 and HeLa cell proliferation in vitro and EAC tumor growth in vivo by Lapemis curtus (Shaw 1802) venom. Toxicon 51(1):157–161PubMedCrossRefGoogle Scholar
  98. Kellert SR (1993) Values and perceptions of invertebrates. Conserv Biol 7(4):845–855CrossRefGoogle Scholar
  99. Kijjoa A, Sawangwong P (2004) Drugs and cosmetics from the sea. Marine Drugs 2:73–82CrossRefGoogle Scholar
  100. Koru O, Toksoy F, Acikel CH, Tunca YM, Baysallar M, Uskudar Guclu A, Akca E, Ozkok Tuylu AI, Sorkun K, Tanyuksel M (2007) In vitro antimicrobial activity of propolis samples from different geographical origins against certain oral pathogens. Anaerobe 13(3–4):140–145PubMedCrossRefGoogle Scholar
  101. Kujumgiev A, Tsvetkova I, Serkedjieva Y, Bankova V, Christov R, Popov S (1999) Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J Ethnopharmacol 64(3):235–240PubMedCrossRefGoogle Scholar
  102. Kunin WE, Lawton JH (1996) Does biodiversity matter? Evaluating the case for conserving species. In: Gaston KJ (ed) Biodiversity. A biology of numbers and difference. Blackwell Science, Oxford, pp 367–387Google Scholar
  103. Laird SA (2002) Biodiversity and traditional knowledge: equitable partnerships in practice. Earthscan/James & James, LondonGoogle Scholar
  104. Lee SKH (1999) Trade in traditional medicine using endangered species: an international context. Paper presented at the 2nd Australian symposium on traditional medicine and wildlife conservation, MelbourneGoogle Scholar
  105. Lee YK, Lee JH, Lee HK (2001) Microbial symbiosis in marine sponges. J Microbiol 39:254–264Google Scholar
  106. Lev E (2003) Traditional healing with animals (zootherapy): medieval to present-day Levantine practice. J Ethnopharmacol 85:107–118. doi: 10.1016/S0378-8741(02)00377-X Google Scholar
  107. Lev E (2006) Healing with animals in the Levant from the 10th to the 18th cent. J Ethnobiol Ethnomed 2(11):9. doi: 10.1186/1746-4269-2-11
  108. Lev E, Amar Z (2002) Ethnopharmacological survey of traditional drugs sold in the Kingdom of Jordan. J Ethnopharmacol 82:131–145PubMedCrossRefGoogle Scholar
  109. Makhubu L (1998) Bioprospecting in an African context. Science 282(5386):41–42PubMedCrossRefGoogle Scholar
  110. Mariottini GL, Pane L (2010) Mediterranean jellyfish venoms: a review on scyphomedusae. Marine Drugs 8(4):1122–1152PubMedCrossRefGoogle Scholar
  111. Marques JGW (1997) Fauna medicinal: Recurso do ambiente ou ameaça à biodiversidade? Mutum 1(1):1–4Google Scholar
  112. McClatchey W (2005) Medicinal bioprospecting and ethnobotany research. Ethnobot Res Appl 3:189–190Google Scholar
  113. McNeely JA (2006) Risks to people of losing medicinal species. In: Miththapala S (ed) Conserving medicinal species: securing a healthy future. IUCN: Ecosystems and Livelihoods Group, Asia, pp 17–31Google Scholar
  114. Mebs D, Omori-Satoh T, Yamakawa Y, Nagaoka Y (1996) Erinacin, an antihaemorrhagic factor from the European hedgehog, Erinaceus europaeus. Toxicon 34(11–12):1313–1316PubMedCrossRefGoogle Scholar
  115. Melo JG, Amorim ELC, Albuquerque UP (2009) Native medicinal plants commercialized in Brazil––priorities for conservation. Environ Monit Assess 156(1):567–580PubMedCrossRefGoogle Scholar
  116. Meylaers K, Clynen E, Daloze D, DeLoof A, Schoofs L (2004) Identification of 1-lysophosphatidylethanolamine (C16: 1) as an antimicrobial compound in the housefly, Musca domestica. Insect Biochem Mol Biol 34(1):43–49PubMedCrossRefGoogle Scholar
  117. Mgbeoji I (2006) Global biopiracy: patents, plants and indigenous knowledge. Cornell University Press, IthacaGoogle Scholar
  118. Molan PC (1999) The role of honey in the management of wounds. J Wound Care 8(8):423–426Google Scholar
  119. Moore RE, Scheuer PJ (1971) Palytoxin: a new marine toxin from a coelenterate. Science 172(3982):495–498PubMedCrossRefGoogle Scholar
  120. Moran K, King SR, Carlson TJ (2001) Biodiversity prospecting: lessons and prospects. Annu Rev Anthropol 30:505–526CrossRefGoogle Scholar
  121. Morgan D (2010) Biosynthesis in insects. Royal Society of Chemistry, TheGoogle Scholar
  122. Mukherjee PK, Ponnusankar S, Venkatesh M (2010) Ethno medicine in complementary therapeutics. In: Chattopadhyay D (ed) Ethnomedicine: a source of complementary therapeutics, Research Signpost, pp 29–52Google Scholar
  123. Müller WEG, Brümmer F, Batel R, Müller IM, Schröder HC (2003) Molecular biodiversity. Case study: Porifera (sponges). Naturwissenschaften 90(3):103–120PubMedGoogle Scholar
  124. Myers N (1979) The sinking ark: a new look at the problem of disappearing species. Pergamon Press, New YorkGoogle Scholar
  125. Nakanishi K (1999a) An historical perspective of natural products chemistry. In: Sankawa U (ed) Comprehensive natural products chemistry: isoprenoids including carotenoids and steroids. Pergamon, OxfordGoogle Scholar
  126. Nakanishi K (1999b) An historical perspective of natural products chemistry. In: Ushio S (ed) Comprehensive natural products chemistry. Elsevier Science B.V, Amsterdam, pp 23–40Google Scholar
  127. Oldfield ML (1989) The value of conserving genetic resources. Sinauer Associates, WashingtonGoogle Scholar
  128. Orduña-Novoa K, Segura-Puertas L, Sánchez-Rodríguez J, Meléndez A, Nava-Ruíz C, Rembao D, Santamaría A, Galván-Arzate S (2003) Possible antitumoral effect of the crude venom of Cassiopea xamachana (Cnidaria: Scyphozoa) on tumors of the central nervous system induced by N-Ethyl-N-Nitrosourea (ENU) in rats. Proc West Pharmacol Soc 46:85–87PubMedGoogle Scholar
  129. Paavilainen HM (2009) Medieval pharmacotherapy, continuity and change: case studies from Ibn Sina and some of his late Medieval commentators. Brill Academic Publishers, BostonCrossRefGoogle Scholar
  130. Padmanabhan P, Sujana KA (2008) Animal products in traditional medicine from Attappady hills of Western Ghats. Indian J Tradit Knowl 7(2):326–329Google Scholar
  131. Pan PG (2006) Bioprospecting: issues and policy considerations. Legislative Reference Bureau, Germplasm resources. HonoluluGoogle Scholar
  132. Park YK, Inegaki M, Alencar SM, Wang HK, Bastow K, Cosentino M, Lee KH (2000) Determinação das atividades citotóxica e anti-HIV dos extratos etanólicos de própolis coletadas em diferentes regiões do Brasil. Mensagem Doce 56:2–5Google Scholar
  133. Parveen, Upadhyay B, Roy S, Kumar A (2007) Traditional uses of medicinal plants among the rural communities of Churu district in the Thar Desert, India. J Ethnopharmacol 113:387–399. doi: 10.1016/j.jep.2007.06.010
  134. Phillips O, Gentry AH (1993) The useful plants of Tambopata, Peru: I. Statistical hypotheses tests with a new quantitative technique. Econ Bot 47(1):15–32CrossRefGoogle Scholar
  135. Pieroni A, Giusti ME, Grazzini A (2002) Animal remedies in the folk medicinal practices of the Lucca and Pistoia Provinces, Central Italy. In: Fleurentin J, Pelt JM, Mazars G (eds) Des sources du savoir aux médicaments du futur/from the sources of knowledge to the medicines of the future, 1st edn. IRD Editions, Paris, pp 371–375Google Scholar
  136. Pinheiro CU (1997) Jaborandi (Pilocarpus sp., rutaceae): a wild species. Econ Bot 51(1):49–58CrossRefGoogle Scholar
  137. Proksch P, Edrada-Ebel RA, Ebel R (2003) Drugs from the sea-opportunities and obstacles. Marine Drugs 1:5–17CrossRefGoogle Scholar
  138. Quinn RJ, Leone PA, Guymer G, Hooper JNA (2002) Australian biodiversity via its plants and marine organisms. A high-throughput screening approach to drug discovery. Pure Appl Chem 74(4):519–526CrossRefGoogle Scholar
  139. Rausser GC, Small AA (2000) Valuing research leads: bioprospecting and the conservation of genetic resources. J Political Econ 108(1):173–206CrossRefGoogle Scholar
  140. Reid WV, Laird SA, Meyer CA, Gamez R, Gollin MA, Sittenfeld A, Janzen DH, Gollin MA, Juma C (1993) Biodiversity prospecting: using genetic resources for sustainable development. World Resources Institute, WashingtonGoogle Scholar
  141. Ridley CP, Faulkner JD, Haygood MG (2005) Investigation of oscillatoria spongeliae-dominated bacterial communities in four dictyoceratid sponges. Appl Environ Microbiol 71(11):7366–7375PubMedCrossRefGoogle Scholar
  142. Rouzaire-Dubois B, Dubois JM (1990) Characterization of palytoxin-induced channels in mouse neuroblastoma cells. Toxicon 28(10):1147–1158PubMedCrossRefGoogle Scholar
  143. Sampaio Alves DF, Cabra Júnior FC, Cabral PPAC, Oliveira Junior RM, Rego ACM, Medeiros AC (2008) Efeitos da aplicação tópica do mel de Melipona subnitida em feridas infectadas de ratos. Rev Col Bras Cir 35(3):188–193CrossRefGoogle Scholar
  144. Santos IJM, Coutinho HDM, Matias EFF, Costa JGM, Alves RRN, Almeida WO (2012) Antimicrobial activity of natural products from the skins of the semiarid living lizards Ameiva ameiva (Linnaeus, 1758) and Tropidurus hispidus (Spix, 1825). J Arid Environ 76:138–141Google Scholar
  145. Sawyer WH, Munsick RA, Van Dyke HB (1961) Pharmacological characteristics of the active principles in neurohypophysial extracts from several species of fishes. Endocrinology 68(2):215–225Google Scholar
  146. Scarpa GF (2004) Medicinal plants used by the Criollos of Northwestern Argentine Chaco. J Ethnopharmacol 91(1):115–135PubMedCrossRefGoogle Scholar
  147. Seedhouse E (2010) Ocean outpost: the future of humans living underwater. Springer, BerlinGoogle Scholar
  148. Silva CCA (2002) Aspectos do sistema imunológico dos insetos. Revista Biotecnologia Ciência & Desenvolvimento 24:68–72Google Scholar
  149. Silva RJ, Fecchio D, Barraviera B (1996) Antitumor effect of snake venoms. J Venom Animals and Toxins 2:79–90CrossRefGoogle Scholar
  150. Simpson RD (1997) Biodiversity prospecting: shopping the wilds is not the key to conservation. Resources 126:12–15Google Scholar
  151. Sittenfeld A (1996) Special article on issues and strategies for bioprospecting. Genet Eng Biotechnol 4:1–12Google Scholar
  152. Sittenfeld A, Cabrera JM, Mora M (2004) Bioprospecting and biotechnology: some policy issue. Gene Conserve 3(12):198–211Google Scholar
  153. Sittenfeld A, Lovejoy A (1998) Biodiversity prospecting frameworks: The INBio experience in Costa Rica. In: Guruswamy LD, McNeely JA (eds) Protection of global biodiversity, covering strategies. Duke University Press, Durham and London, pp 223–244Google Scholar
  154. Slocinska M, Marciniak P, Rosinski G (2008) Insects antiviral and anticancer peptides: new leads for the future? Protein Pept Lett 15(6):578–585PubMedCrossRefGoogle Scholar
  155. Sodeinde OA, Soewu DA (1999) Pilot study of the traditional medicine trade in Nigeria. Traffic Bulletin 18(1):35–40Google Scholar
  156. Soejarto DD (1996) Biodiversity prospecting and benefit-sharing: perspectives from the field. J Ethnopharmacol 51(1–3):1–15PubMedCrossRefGoogle Scholar
  157. Spainhour CB (2005) Drug discovery handbook. Wiley-Interscience, New JerseyGoogle Scholar
  158. Stocker K (1989) Snake venom proteins affecting hemostasis and fibrinolysis. Sorbate food preservatives. CRC Press, BaselGoogle Scholar
  159. Sukarmi S, Sabdono A (2011) Ethical perspectives of sustainable use of reef’s invertebrates as a source of marine natural products. J Coast Dev 11(3):97–103Google Scholar
  160. Svarstad H (2000) Local Interests and foreign interventions: shaman pharmaceuticals in tanzania. In: Dhillion SS (ed) Svarstad H. Responding to bioprospecting: from biodiversity in the south to medicines in the north, Spartacus Forlag As Oslo, pp 145–153Google Scholar
  161. Székely T, Gaillard A (2007) Conserving biodiversity using patent law. Nat Biotechnol 25(10):1087–1088PubMedCrossRefGoogle Scholar
  162. Tabrah FL, Kashiwagi M, Norton TR (1972) Antitumor activity in mice of four coelenterate extracts. Int J Clin Pharmacol Ther Toxicol 5(4):420–422Google Scholar
  163. Thakur AN, Thakur NL, Indap MM, Pandit RA, Datar VV, Müller WEG (2005) Antiangiogenic, antimicrobial, and cytotoxic potential of sponge-associated bacteria. Mar Biotechnol 7(3):245–252PubMedCrossRefGoogle Scholar
  164. Thakur NL, Müller WEG (2004) Biotechnological potential of marine sponges. Curr Sci 86(11):1506–1512Google Scholar
  165. Thammasirirak S, Phonkham P, Preecharram S, Khanchanuan R, Phonyothee P, Daduang S, Srisomsap C, Araki T, Svasti J (2006) Purification, characterization and comparison of reptile lysozymes. Comparative Biochem Physiol Part C 143:209–217Google Scholar
  166. Thomas TRA, Kavlekar DP, LokaBharathi PA (2010) Marine Drugs from sponge-microbe association—a review. Marine Drugs 8(4):1417PubMedCrossRefGoogle Scholar
  167. Tamayo G, Nader W, Sittenfeld A (1997) Biodiversity for the bioindustries. In: Ford-Lloy BV, New bury HJ, Callow JA (eds) Biotechnology and plant genetic resources: conservation and use. CAB International, Wallingford, pp 255–279Google Scholar
  168. Trowell S (2003) Drugs from bugs: the promise of pharmaceutical entomology. Futurist 37(1):17–19Google Scholar
  169. Uniyal SK, Singh KN, Jamwal P, Lal B (2006) Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya. J Ethnobiol Ethnomed 2(14):1–8Google Scholar
  170. Van NDN, Tap N (2008) An overview of the use of plants and animals in traditional medicine systems in Viet Nam. 1st edn. TRAFFIC Southeast Asia, Greater Mekong Programme, Ha NoiGoogle Scholar
  171. Wade D, Andreu D, Mitchell SA, Silveira AMV, Boman A, Boman HG, Merrifield RB (1992) Antibacterial peptides designed as analogs or hybrids of cecropins and melittin. Int J Pept Protein Res 40(5):429–436PubMedCrossRefGoogle Scholar
  172. Wang G (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol 33(7):545–551PubMedCrossRefGoogle Scholar
  173. Weinheimer AJ, Spraggins RL (1969) The occurrence of two new prostaglandin derivatives (15-epi-PGA2 and its acetate, methyl ester) in the gorgonian Plexaura homomalla chemistry of coelenterates XV. Tetrahedron Lett 10:5185–5188CrossRefGoogle Scholar
  174. WHO (2002) Traditional medicine strategy 2002–2005, GenevaGoogle Scholar
  175. Willix DJ, Molan PC, Harfoot CG (1992) A comparison of the sensitivity of wound infecting species of bacteria to the antibacterial activity of manuka honey and other honey. J Appl Microbiol 73(5):388–394CrossRefGoogle Scholar
  176. Yamakawa M (1998) Insect antibacterial proteins: regulatory mechanisms of their synthesis and a possibility as new antibiotics. J Seric Sci Jpn 67(3):163–182Google Scholar
  177. Yinfeng G, Xueying Z, Yan C, Di W, Sung W (1997) Sustainability of wildlife use in traditional chinese medicine. Conserving China’Biodiversity: reports of the biodiversity working group (BWG), China Council for International Cooperation on Environment and DevelopmentGoogle Scholar
  178. Zhang D, Cheng Z (2000) Medicine is a humane art: the basic principles of professional ethics in chinese medicine. Hastings Cent Rep 30(4):S8–S12CrossRefGoogle Scholar
  179. Zilinskas RA, Lundin CG (1993) Marine biotechnology and developing countries. The International Bank for Reconstruction and Development, WashingtonCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rômulo Romeu Nóbrega Alves
    • 1
  • Ulysses Paulino Albuquerque
    • 2
  1. 1.Ethnozoology, Conservation and Biodiversity Research Group, Departamento de BiologiaUniversidade Estadual da ParaíbaCampina GrandeBrazil
  2. 2.Applied Ethnobotany Laboratory, Departamento de BiologiaUniversidade Federal Rural de PernambucoDois IrmãosBrazil

Personalised recommendations